首页/文章/ 详情

【收藏】动力电池结构仿真实例+自研实用软件NETMS免费放送

5月前浏览8983

本文摘要(由AI生成):

本文首先对电池模组支架、系统壳体、外部框架以及耳坐的最大变形量进行了计算,结果显示最大变形量分别为2.69mm、3.01mm、2.25mm和2.01mm。接着,文章对结构中的最大应力进行了分析,发现最大应力出现在横梁位置,最大值为1177.3Mpa。但该最大应力点存在误差,不具备参考价值。经过调整,当应力点向结构内部移动一定距离后,应力值显著降低,并满足设计要求。此外,文章还进行了模拟碰撞分析,通过施加规定的脉冲载荷,计算了x和y方向冲击产生的变形和等效应力,并对结果进行了评估。最后,介绍了NETMS分析处理系统,该系统提供了电池包热管理系统设计工具、制冷计算、安全性评估等实用功能,有助于提高企业设计效率和CAE分析的规范性。


7月3日,戴姆勒宣布入股中国动力电池电芯制造商孚能科技(赣州)有限公司。


作为全球最大的商用车制造商,戴姆勒的举动,无疑是代表着目前的汽车行业大势。如今电动化已经成为了全球车企转型的关键
以戴姆勒旗下的奔驰来说,据奔驰目前公布的企业规划来看,到2030年电动车型将占到年度新车销量的50%以上。可见新能源汽车未来的市场发展。
作为一个从事动力电池结构设计和热管理15年的老兵,今天笔者就借仿真秀的平台给大家从实际案例出发,为大家介绍一下电池动力电池PACK结构分析的一些经验。


动力电池PACK为什么需要CAE分析?


PACK是新能源汽车最重要的组成部分,可称之为心脏,电池系统需要满足汽车运营条件下的苛刻力学环境的要求。按照传统研发方式,设计-样包-测试-优化-样包-测试,反复循环,这种传统做法,周期长,成本高。
另一个重要问题,即使出现了结构失效,由于影响因素比较多,并不能非常准确的得到结论。
CAE,Computer Aided Engineering,计算机辅助工程,利用计算���对工程中的多个过程进行仿真优化。将产品研发过程升级为:结构设计—CAE仿真验证—设计优化—CAE再验证—3D模型样机。
大大缩短了研发周期,且降低了打样费用,已广泛应用于汽车领域的方方面面。


动力电池PACK-CAE结构分析有哪些?


电池PACK结构设计需要的CAE分析包括:结构强度、模态、随机振动、机械冲击、翻转、跌落、模拟碰撞等,涵盖GB/T 31467.3-2015 电动汽车用锂离子动力蓄电池包和系统 第3部分 安全性要求与测试方法所有内容,是最重要的结构验证手段之一。
结构分析图谱


0.7吨pack系统结构分析实例


软件环境:Ansys Workbench
一 系统介绍


1.系统信息介绍


1、额定电压316.8V(242V-360.8V)
2、容量360Ah,
3、单体电芯参数:额定3.6V  重量:47g 容量:2.4Ah 内阻范围:19-23.5mΩ;
4、系统重量:300Kg
5、使用环境温度:充电,0~45℃;放电,-20~55℃ (计算时选择22℃)


2.系统结构介绍


图1为pack系统壳体框架结构三视图,图2、图3为壳体框架立体图
图1 系统结构图
图2俯视图
图3仰视图


二 结构分析

1 .振动分析

(1) 计算目的


1. 计算蓄电池pack系统的框架结构是否链接可靠、结构完好、产生裂缝、断裂等现象。


(2)计算条件


1. Z轴PSD值(重力方向)
表1
2. y轴PSD值(行驶方向)
表2
3. x轴PSD值(垂直于行驶方向)
表3


(3)结果分析

1. 重力方向危险点结果评估结果分析


图4  危险点的位置
图5  评估最大应力值选择点
最大应力值为为580.41Mpa ,最大应力点位于结构两个面交界处边线上存在一定的误差不具备参考价值,只是局部产生应力奇点,不会对整体结构造成破坏。
将应力点向结构内部方向移动一个单元应力值降到269.04 Mpa,最大应力点到选择的应力值点距离8mm移动两个单元应力值降到152.82 Mpa,对应屈服安全系数为2.270;疲劳安全系数为2.731 ,满足设计要求。


附件1:危险点安全系数


2. 行驶方向
图6  危险点的位置
图7  评估最大应力值选择点
最大应力值为为383Mpa ,最大应力点位于结构两个面交界处边线上存在一定的误差不具备参考价值,只是局部产生应力奇点,不会对整体结构造成破坏。
将应力点向结构内部方向移动一个单元应力值降到216.26 Mpa,最大应力点到选择的应力值点距离8mm移动两个单元应力值降到130.87 Mpa,对应屈服安全系数为2.636;疲劳安全系数为3.172 ,满足设计要求。


附件2:危险点安全系数


3. 垂直行驶方向
图8  危险点的位置
图9  评估最大应力值选择点
最大应力值为为350.79Mpa ,最大应力点位于结构两个面交界处边线上存在一定的误差不具备参考价值,只是局部产生应力奇点,不会对整体结构造成破坏。
将应力点向结构内部方向移动一个单元应力值降到174.17 Mpa,最大应力点到选择的应力值点距离8mm移动两个单元应力值降到105.29 Mpa,对应屈服安全系数为3.277;疲劳安全系数为3.942,满足设计要求。


附件3:危险点安全系数



2.机械冲击分析

(1) 计算目的


1. 计算蓄电池pack系统的框架结构是否链接可靠、结构完好、产生裂缝、断裂等现象。


(2) 计算条件


1. 对测试对象施加25g、15ms的半正弦冲击波,Z轴方向冲击3次,观察2小时。
图10脉冲曲线图


(3)结果分析


图11 危险点的位置
图12  评估最大应力值选择点
最大应力值为为1574Mpa ,最大应力点位于结构两个面交界处边线上存在一定的误差不具备参考价值,只是局部产生应力奇点,不会对整体结构造成破坏。
将应力点向结构内部方向移动一个单元应力值降到479.08 Mpa,最大应力点到选择的应力值点距离8mm移动两个单元应力值降到326.87Mpa,对应屈服安全系数为1.055不满足设计要求。移动四个单元,距离12mm应力值降到248.66 Mpa,对应屈服安全系数为1.387不满足设计要求


附件4:危险点安全系数



3.跌落分析

(1) 计算目的


1. 计算蓄电池pack系统的框架结构是否链接可靠、结构完好、产生裂缝、断裂等现象。


(2) 计算条件


1. 沿Z轴方向,从1m的高度自由跌落到水泥地面。
图13跌落冲击曲线图


(3)分析结果


变形:
图14 整体变形图
图15内部支架变形图
图16 外部框架变形图 
 图17 耳坐变形图
等效应力:
图18 主要应力集中部件详图


(4)结果分析


图19整体等效应力图
图20  评估最大应力值选择点
1. 从变形结果来看,变形比较大的区域在窄端的中心和宽端的中心位置,详细分解来看系统内的电池模组支架的最大变形量为2.69mm,系统壳体的最大变形为3.01mm,系统外部框架的最大变形为2.25mm,四个耳坐的最大变形为2.01mm。
2. 从应力结果来看,最大应力出现在窄端内部支撑电池模组的横梁位置,最大值1177.3Mpa,最大应力点位于结构两个面交界处边线上存在一定的误差不具备参考价值,只是局部产生应力奇点,不会对整体结构造成破坏。
将应力点向结构内部方向移动一个单元应力值降到472.08 Mpa,最大应力点到选择的应力值点距离12mm移动两个单元应力值降到177.3 Mpa,对应屈服安全系数为1.946,满足设计要求。


附件5:危险点安全系数



4.模拟碰撞分析

(1) 计算目的


1. 计算蓄电池pack系统的框架结构是否链接可靠、结构完好、产生裂缝、断裂等现象。


(2) 计算条件


1.测试对象水平安装在带有支架的台车上,根据测试对象的使用环境给台车施加规定的脉冲(汽车行驶方向为x轴,垂直于行驶方向的水平方向为y轴)。
表4 在x和y方向施加以下载荷
由于在加速度的转折点需要一个短时间的缓冲,所以绘制的曲线图如下:
图21 y方向曲线图


(3)分析结果


x方向冲击产生的变形:
x方向冲击产生的等效应力:
Y方向冲击产生的变形:
Y方向冲击产生的等效应力:


(4)结果分析


图22等效应力最大值整体 位置图
图45评估最大应力值选择点
最大应力值为为2541.1Mpa ,最大应力点位于结构两个面交界处边线上存在一定的误差不具备参考价值,只是局部产生应力奇点,不会对整体结构造成破坏。
将应力点向结构内部方向移动一个单元应力值降到738.34 Mpa,最大应力点到选择的应力值点距离18mm移动两个单元应力值降到306.02Mpa,对应屈服安全系数为1.127不满足设计要求。
移动四个单元,距离20mm应力值降到252.14 Mpa,对应屈服安全系数为1.368不满足设计要求。


【仿真秀仿真知识周】


2020年7月7日晚8点


动力电池结构分析实例大直播


7.7号晚8点,《电池系统结构分析实例解读》笔者将会用一个更完整案例结合实际操作,讲述一个电池包结构分析的规划与实施。
目标是让每一位学员听课后能够理解电池包结构分析的重点步骤和掌握电池PACK CAE分析的核心技能。
大家可扫描下方二维码报名参加哦!


【实用工具免费放送】


NETMS分析处理系统免费 使用
7月7日晚8点的电池系统CAE实例解析直播课时,笔者不但对一个系统的CAE项目实施进行详细和干货满满的分享。
而且会对笔者(刘军涛博士)团队开发的热管理与结构分析相关的一套分析处理系统-NETMS进行详细解析,并依据学员情况,课后分析系统的部分能免费供学员使用和研讨。
新能源汽车电池系统CAE结构分析除需要专业人员进行CAE项目的实施和计算,企业对于CAE分析项目规范建立和后处理工具的统一开发同样重要,只有在一套企业认可的方法下处理所得到的CAE分析数据,不同的工程师使用相同的标准规范来进行项目结果的解析,才能真正建立CAD-CAE之间的良性沟通。


系统登录之后,包括了电池包热管理系统设计工具、制冷计算,安全性评估、螺栓评估等多个实用的CAE分析工具。


以热管理设计为例,通过PACK系统参数,能够计算出系统的散热需求和热管理系统设计的多个关键参数,且每个工具计算完成之后,都具备报告导出的功能,一目了然的能够为企业系统快速完成热管理系统基础设计,极大地提高设计效率。
以仿真秀的这次直播作为假想客户,输入基础参数后,计算完成参数内容,点击导出报告,会生成一份规范完整热管理系统设计报告。
点击导出报告,并且保存后, 生成的专业热管理报告如图所示,非常快速的完成了一份非常专业的系统热设计评估报告,直播结束之后,该功能可开放与所有学员。
其它模块同样具备计算和导出报告的功能。
NETMS系统除了专业的评估工具,还包含了非常有价值的企业CAE规范定义。
NETMS的热管理系统部分系统整理了电池PACK热管理技术,形成了热管理系统开发设计档案一套,直播结束后也将免费开放与所有学员。
点击热管理或者热仿真,会将整理好的一套完整技术资料呈现出来。
除此之外,NETMS统还包含了包括上传、下载及专家库部分的技术内容,直播课时会分享与大家。



Workbench形状优化多学科优化其他专业通用参数优化热设计
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2020-07-07
最近编辑:5月前
畅诺热控
高效热管理解决方案供应商
获赞 15粉丝 603文章 4课程 7
点赞
收藏
作者推荐
未登录
2条评论
lubin
☯️
4年前
{d83d}{dc4d}
回复
穷熊极饿
签名征集中
4年前
期待刘老师的直播
回复 1条回复
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈