整个模型包括5和50AH三元电芯,电芯底部采用液冷冷却方式,进口流量为10g/s,进口温度25℃,环境温度30℃,初始的温度30℃,假设单个电芯20000W/M3,整个模组对外的为绝热条件。
网格划分
在scdm里面对数模进行简化,并对每个模块进行命名,为了方便导入fluent后能快速识别特殊边界条件,在群组中提前制定这些边界条件。如需要对一些边界提前定义参数,如热阻,需要设置对流换热的面也可在群组里面提前识别处理,方便在fluent里面处理。
导入fluent meshing后,先画面网格,设置面网格的最小0.5mm,最大8mm,其它保持默认,1.32min面网格划分结束,有719975各面网格,面网格最大SKEWNESS为0.63
设置体网格,体网格的最大单元设置为8mm,其它保持默认4.27min后体网格划分结束,网格数量为1234926,网格正交比>0.2具体的网格质量参数如下所示,满足计算的要求
边界层的位置划分了3层网格,导热垫厚度方向的网格层数也是大于2层,
导入fluent ,打开能量模型,打开湍流模型,湍流模型选择标准的k-e模型
定义材料参数如下表所示:
定义好材料参数后,把每个材料赋予到对应的模型上去,电池能量密度为20000W/M3,对于相同材料的模型可以采用copy方式去赋予材料效率更高
密度 | 比热 | 导热系数 | |
铝 | 2719 | 871 | 202.4 |
Cell | 2300 | 930 | 18.5/18.5/1.5 |
导热垫 | 2420 | 967 | 2 |
Hyb | 1800 | 550 | 0.2 |
定义边界条件:
求解设置
设置进口边界条件为质量流量进口,流量为0.01Kg/s,进口的温度25℃,注意调整进口的方向,本案例为沿-Z方向。出口的边界条件为压力出口,
求解器
选择SIMPLEC,相对于SIMPLE算法,可加快迭代收敛,该算法比较适用于稳态求解,对于离散方法,通常在一阶迎风式和二阶迎风式中选择,二阶比一阶的计算精度跟高,但是一阶迎风式相对更容易收敛。
设置监测
在计算的过程通过设置的监测数据,判断计算的是否收敛,一般监测的参数都是在仿真中比较关系的参数,比如温度,压力参数等。下图设置了监测每个电芯的最高温度,冷却流道压降参数。
初始化:
求解前需要进行初始化。设置求解保存、步骤和停止条件等。进行过初始化后,即可计算面和体等相关的参数,如面积、体积等,设置初始温度30℃。
迭代了136步,达到10e-3收敛标准,但是查看监测的数据已趋于稳定,可认为收敛了。
结论:
电池的最高温度34.8℃
流道压降42pa
流道出口温度25.9℃
补充:
上文动力电池热管理仿真为粗略的仿真方法,模型还是比较小,需要处理和注意的细节相对较小,仿真的方法还需进一步的优化,本次仿真未考虑,热阻、随时间变化发热功率,导电排,极柱的欧姆热、随温度变化的材料参数等等因素。
更多考虑点:
上文动力电池热管理仿真为粗略的仿真方法,模型还是比较小,需要处理和注意的细节相对较小,仿真的方法还需进一步的优化,本次仿真未考虑,热阻、随时间变化发热功率,导电排,极柱的欧姆热、随温度变化的材料参数等等因素。