摘要
本文介绍了永磁同步电机的三闭环位置矢量控制方法,通过增加位置环实现对电机转子位置的精确控制。文章详细阐述了位置环的设计和前馈控制器的应用,避免了超调现象,并通过数学公式推导了位置环闭环传递函数和误差传递函数。仿真结果显示,该系统在阶跃和正弦波输入下能快速准确跟随指定位置,验证了其优越的控制性能。该研究为电机控制领域提供了有价值的参考。
正文
导读:本期文章主要介绍永磁同步电机三闭环位置矢量控制。三闭环控制是在双闭环的基础上加了一个位置环对位置角进行控制。那为什么要加位置环呢?因为控制系统的需求变了,双闭环要求转速的变化,而三闭环则要求转到指定的位置。本文主要介绍一下三闭环的位置环的原理和实现的过程。
矢量控制的最终目的是通过控制定子电流来改善电机的转矩响应速度和电机转子转速的跟随性能。矢量控制的基本思想是在三相交流电机上模拟直流电机的转矩控制规律,通过矢量坐标变换将定子电流分解成转矩电流分量和励磁电流分量,并使这两个分量互相垂直,彼此独立解耦来加以控制,获得像直流电机一样的良好的动态特性。
因此,矢量控制既需要控制定子电流的幅值大小,又需要控制定子电流空间向量的相位。根据用途的不同,永磁同步电机电流矢量控制方法也各不相同。通常采用的控制方法主要有:id=0控制和最大转矩电流比控制MTPA。
从图(1-1)和(2-1)可知,永磁同步电机三闭环矢量控制只是在双闭环的基础上添加了一个位置环,所以下面将重点介绍位置环的原理和实现过程。
设计位置环时,为简化计算,可将速度环用一个一阶惯性环节来替代。位置环不能出现超调现象,位置环调节器只能采用比例调节器,将位置环校正成典型I型系统。
由图(2-2)可以得到采用前馈复合控制器的位置环闭环传递函数为:
进而可以确定位置环误差传递函数:
为了实现输出信号完全复现输入信号,使位置误差为0,从而有:
由上式可知,由于该前馈控制器是对位置信号进行前馈,所以G(s)可以看成是由加速度前馈和速度前馈两部分组成,在实际伺服系统中,引入速度前馈已经能使伺服系统获得令人满意的动态性能。所以,前馈控制器一般为速度前馈控制器。
图3-4 永磁同步电机三闭环矢量控制系统仿真