文一:
新型环保复合材料在轻型汽车应用中的研究进展综述
摘要:
最近不确定的气候变化相关问题导致所有汽车制造商都担心开发创新的复合材料来降低汽车的油耗。因此,这篇综述文章特别关注了促使几家汽车制造商进行生物复合材料研究的因素,因为生物复合材料在全球的生物降解性和可持续性方面发挥着重要作用。特别是,无纤维纳米纤维增强复合材料是当前sce-nario的主要研究热点,它可以应用于不同的汽车应用,具有许多优点和丰富的可及性。聚丙烯(PP)是汽车行业中新兴的聚合物,许多研究人员现在主要将研究重点放在聚丙烯基复合材料上,这可以为当前情况下面临的不同环境问题提供帮助,如图1所示。它还报告了不同汽车制造商在开发创新复合材料方面的最新进展,即寻找将燃料消耗降低到建议范围内的适当行动。
图:天然纤维增强复合材料在轻型汽车上的应用。
图:汽车产品的生命周期评估。
图:需要生物复合材料来减少二氧化碳足迹。
图:热塑性和热固性聚合物基天然纤维高分子复合材料。
图:全球碳纤维增强复合材料需求趋势及展望。
图:不同汽车制造商使用天然纤维的进步。
图:汽车应用领域的重要创新。
图:福特汽车采用碳纤维增强复合材料的创新。
文二:
固体中的超引力瑞利-泰勒不稳定性
摘要:
固体中的瑞利-泰勒不稳定性源于引力势与弹性势的竞争和支配。我们利用离心超重力的一种新方法,系统地揭示了固体中的超重力瑞利-泰勒不稳定性现象。将水凝胶板放置在离心机中,随着离心重力的增加并超过一定阈值,其自由表面从平坦状态转变为图案化状态。实验表明,离心超重力增强了引力势,因此与地球引力相比,可能会在更薄、更轻、更硬的水凝胶板中引起不稳定性。对于更宽的几何尺寸、质量密度、弹性模量和重力加速度范围,存在无量纲临界超重力,超过该范围后屈曲模式对板的纵横比敏感。我们证明了地球引力的理论结果可以推广到具有侧向边界约束的板块的超引力情形。这些发现可能有助于更好地理解超重力下天然固体的稳定性,并可能为在工业中实现特定的制造铺平新的道路。
图:实验装置示意图。(a)离心机工作台。装载容器和摄像机位于与电机驱动的旋转主轴连接的旋转臂上。装载容器的转动半径可以改变为20厘米、25厘米和30厘米。(b)丙烯酸容器中水凝胶板的摄影。在透明丙烯酸容器的底部使用网格纸,以便于清楚地识别水凝胶板的变形。(c)超重力下密闭水凝胶板的示意图。
图:水凝胶平板表面形貌的演变。
图:超重力条件下不同纵横比水凝胶的最终后屈曲模式。
文三:
微波诱导陶瓷热控断裂中不规则裂纹扩展的机理
摘要:
基于热控制断裂法的微波切割玻璃陶瓷以其比传统加工方法能耗低、效率高的优点,近年来备受关注。然而,在这一过程中,不规则的裂纹扩展是有问题的,这阻碍了这一先进技术的工业应用。本研究在实验的基础上,将不规则裂纹的传播概括为初始阶段的不稳定传播、中间阶段的偏离传播和末端段的非贯通传播。实验结果与预测结果吻合较好,在某些陶瓷的切削加工中,两者的相对偏差可小于5%。通过仿真和理论分析,揭示了斜向传播和非穿透传播的机理。由于该研究为预测微波切割陶瓷初始阶段的不稳定裂纹扩展提供了有效的方法,并了解了微波切割陶瓷整个裂纹扩展阶段的不规则扩展机制,因此对微波切割陶瓷材料的热控断裂方法的工业应用具有重要意义。
图:基于TCFM的微波切割陶瓷的物理过程((a)微波加热陶瓷,(b)产生热应力和(c)裂纹扩展过程)。
图:微波切割系统的实验装置由(a)微波源和切割机,(b)微波控制器和(c)圆形聚焦波导组成。
图:玻璃初始裂纹的不稳定扩展。
图:圆形微波光斑玻璃曲线切割的裂纹扩展形态。
图:在典型应力分布条件下确定裂纹扩展区域的原理。
图:四种陶瓷切削刃的热应力及裂纹代表区。
图:四种陶瓷超速传播长度的预测结果。
图:端部扩展裂纹附近应力状态的模拟和示意图。(a) 模拟应力分布。(b) 应力分布示意图。
图:应变能释放和裂纹扩展的过程。(a) 拉伸应力场集中;(b) 新裂纹前缘扩展;(c) 下一次传播。
文四:
软弹性层中的瑞利-泰勒不稳定性
摘要:
这项工作研究了由两个附着在刚性表面上的重弹性层组成的软体的形态稳定性,该软体仅受整体重力的作用。使用理论和计算工具,我们描述了不同图案的选择及其非线性演变,揭示了它们形成的弹性和几何效应之间的相互作用。与流体中类似的重力诱导的形状转变(如瑞利-泰勒不稳定性)不同,我们证明了非线性弹性效应饱和了分叉解的动态不稳定性,显示了一个丰富的形态图,其中可以出现数字化和稳定褶皱。这项工作的结果为设计具有可调形状的新型软系统提供了重要的指导,并在工程科学中有一些应用。这篇文章是“通过复杂介质中的不稳定性进行模式化:理论和应用”主题文章的一部分。
图:两种不同配置的材料设置示意图。
图:产生指纹形态和位移场。
图:产生的形态和位移场。
文五:
微波电磁干扰屏蔽用碳基复合材料的研究进展
摘要:
由于电子行业的快速技术发展,对电磁干扰(EMI)屏蔽的需求在过去几年中强劲增长。为了满足这些显著增加的需求,正在研究许多新的层结构材料(以及具有各种形态的其他结构),以取代传统使用的金属片来进行EMI屏蔽。碳基纳米结构及其复合材料由于其低重量、成本效益和良好的热/电性能而被用于EMI保护。聚合物也是低密度材料,具有低成本和易于加工的额外优点。将各种聚合物与不同类型的导电碳填料相结合的复合材料已被提出作为EM波吸收剂。MXene基2D层状材料在EMI屏蔽中的应用也受到了极大的关注。在这篇综述文章中,我们系统地总结了近年来设计用于微波/无线电波吸收和EMI屏蔽的材料的研究进展。本文涵盖了碳基纳米结构材料、各种聚合物、层状无机材料及其复合杂化材料。最后,简要讨论了碳、聚合物和MXene基材料未来EMI屏蔽应用的前景和突出挑战。
图:入射到EMI屏蔽材料板上的EM波的可能衰减机制的示意图。
图:电磁干扰屏蔽材料主要类别示意图。
图:(a)由热固性 PI 泡沫衍生的碳泡沫合成的示意图。
图:描述不同碳基材料的EMI屏蔽机制的示意图。