摘要
由于氢气燃料在清洁和可回收能源中的应用,氢气燃料罐制造的重要性是替代石油燃料的最重要问题之一。它们由两个主要部分组成:塑料内胆,作为氢气逃逸的屏障,以及碳纤维增强聚合物(CFRP)层以增强罐体。塑料内胆可以通过旋转成型或吹塑制造。在旋转成型中,金属凸台直接嵌入模具中,并在缠绕步骤之前粘附在聚合物上。然而,在吹塑中,金属凸台焊接到内胆聚合物上。通过比较这两种方法,旋转成型显示出更好的反馈,因为它具有组装凸台和内胆部分的能力,并且还可以同时制造该部件,没有焊接引起的缺陷。此外,通过有效的表面处理可以获得聚合物对金属的粘附能力的提高。因此,在这些方面,对粘附概念的良好了解可能是有用的。在这项工作中,提出了可应用于旋转成型的铝(金属)和中密度聚乙烯(内胆)的可能处理方法,并比较了它们的粘附行为。这些表面处理方法是阳极氧化、火焰处理、用不同平均粒径的砂粒喷砂处理和用聚乙烯接枝(PEG)涂层(CEA 专利号 FR3035173)。尽管机械测试结果如此,发现喷砂处理(具有较高的粗糙度值)与 PEG 涂层相结合,在金属/聚合物界面处的粘附性比旋转成型中的其他可能方法表现出更高的粘附性。这些不同表面处理的微观结构证实了获得的机械结果。
关键词 聚合物-金属粘附 旋转成型 阳极氧化 喷砂处理
简介
如今,氢气是最具战略意义的替代能源之一。由于其几乎有“无限”的来源,并且使用这种燃料不会产生温室气体,所以它是多年来最有用的燃料之一[1, 2]。因此,氢气的储存一直是具有挑战性的特征。氢气密度低(例如,1 千克氢气在室温下占据 11 立方米的空间)[3],这导致储存体积增加,从而导致氢气储存的发展。已经利用了多种储存氢气的方式,如聚合物/复合泡沫、液体储存罐和高压储存容器[4–6],但由于其在工业中的不同应用,技术倾向于增强和改进高压储存容器。高压储存容器有四种类型/代,如下[7, 8]:
& 类型二:用纤维-树脂复合材料包裹的厚金属内胆环。
& 类型三:完全用纤维-树脂复合材料包裹的金属内胆。
& 类型四:完全用纤维-树脂复合材料包裹的聚合物内胆。 图1:IV型压力容器示意图。
这四种上述类型都可以储存氢气,但选择它们的差异是基于最终应用(例如成本、技术性能等)。类型一对于 H2 作为工业气体有用,而类型二在更高压力的情况下有用。类型三和类型四主要用于重量节省很重要的便携式应用,但它们要贵得多[9]。
图2 阳极氧化
图3 火焰处理
最近,第四代(类型四),用于高压气态氢气储存,正在为大多数行业考虑,这导致在各种技术中有更多的改进考虑。关于类型四氢气压力容器的最新发展在不同方面显示出可接受的结果。由于这一代包括:
&
聚合物的内层(作为阻挡氢气的作用)和碳纤维复合材料的外层(作为机械强度的作用)。
&
金属底座,它集成到罐中,确保罐加载氢气。
由于氢气的渗透性和存在于高压储存容器中的非常高的压力,关键要点之一是聚合物(内层)和金属底座之间的界面。 这导致成为氢气扩散最可能的位置。事实上,尽管在这一领域进行了研究,聚合物内胆和金属底座之间的界面仍然是高压容器的薄弱点。因此,在该界面处应用将聚合物粘附到金属的不同方法得到了发展,并且已经进行了许多研究以获得更好的粘附性能[10]。
图4 喷砂处理
制造内部聚合物衬里有两个常见程序:
&
通过应用聚合物粉末的旋转成型工艺。
&
挤出吹塑。
在旋转成型中,填充口可以直接嵌入模具中,并在缠绕步骤之前粘附在聚合物上。然而,在挤出过程中,金属凸台焊接到内胆聚合物上。通过比较这两种方法,旋转成型显示出更好的反馈,因为它具有组装凸台和内胆部分的能力,并同时制造该部件,没有焊接引起的缺陷。
图 5 PEG 涂层处理的程序:a. 使用贴纸分离铝的适用表面,b. 用 PEG 粉末覆盖接触表面,c. 将样品在 200 摄氏度下加热 15 分钟。
旋转成型是一种用于转化塑料材料的工艺,用于制造小或大尺寸的空心部件,甚至是双层壁部件。旋转成型的原理相对简单;然而,它允许制造复杂的部件。这两个优点是其成功的关键参数。第一个描述类似旋转成型设备的机器的专利建于 1935 年。1941 年由联合碳化物公司引入的塑溶胶(PVC)的推出,使旋转成型有了首次发展。1950 年聚乙烯的工业使用及其在 1960 年左右以微粉化形式的可用性,使其成为该工艺的理想材料。
图6 滚塑过程
然而,该工艺在很长一段时间内仍然处于边缘地位。事实上,它被认为是为小批量保留的,并且在可使用聚合物的选择上具有限制性(主要是聚乙烯)。然而,在过去的二十年里,新聚合物的合成以及工艺控制手段的进步,使得能够重新审视这一判断。因此,最近的发展导致设计师将此技术视为挤出吹塑的替代方案。总的来说,旋转成型过程有四个步骤:
&
装载模具:模具通过聚合物粉末充电,然后关闭。此数量必须预先定义,以便获得具有所需厚度的形状。关闭后,模具开始在两个正交轴上以 2-40 转/分钟的速度旋转。
&
加热:然后将旋转模具放置在烘箱中,在那里加热到聚合物粉末的熔化温度,然后开始熔化并逐渐采用模具的内部形式。旋转继续,直到材料相当分布,以便零件的厚度处于最可用的恒定值。热量通常由燃气燃烧器或燃料油提供,但也可以通过电阻或微波产生。
&
冷却:随着双轴旋转的继续,模具被转移到冷却站。为了冷却模具和聚合物,将使用水、空气或两者的组合。冷却一直持续到聚合物凝固。
&
脱模:冷却后,模具被转移到装载/卸载部分。模具打开,最终产品从模具中取出。一旦产品从模具中取出,模具就可以重新装载,并且循环可以重新开始。
粘附取决于制造方法以及各层的化学性质以及各层之间的相对配置。这通常是通过使用粘合剂或挤出层压工艺来完成的。在旋转成型领域,聚合物和金属材料之间的粘附兴趣来自于以下两种情况:
&
在过程结束时释放零件:在这种情况下,目标是避免两个可能阻碍轻松释放的零件之间的粘附。
&
使用金属嵌件:在这种情况下,期望在聚合物和金属材料之间获得良好的粘附。
有不同的粘附理论,即润湿(吸附)理论[11,12]、静电(接触充电)概念[13]、机械联锁理论[14,15]、化学结合原理[13]和扩散原理[16]。这些理论解释了两种材料之间粘附的不同现象。这些理论呈现了粘附的性质以及可能影响两种材料之间界面性能的参数。
图 7 a. 模具配置;b. 剪切试验设置。
所提出工作的目的是分析所有可能的表面处理,以考虑选择合适的处理或它们的混合的可能性。首先,确定了氢气储存罐的简单结构如图 1 所示。它包含四个主要部分:聚合物的内层、金属底座、复合部件和衬里/金属的接口。在这项工作中,将重点关注衬里/金属部分的接口。本文包括四个部分,包括本介绍。应用材料和各种表面处理的描述被呈现出来。然后,介绍了不同的物理化学和机械特性。最后,对结果进行了讨论,以便通过应用的特征测试看到每种处理的效果。
实验程序
材料
储罐的衬里部分由聚合物和金属段制成。本研究中使用的聚合物粉末由位于英国的 Matrix polymer®提供,是密度为 0.93 克/立方厘米的中密度聚乙烯(MDPE)。MDPE 的熔化温度为 125.5°C。铝 6061-T6 杆被提供为具有外部半径 14 毫米、内部半径 6 毫米和高度 70 毫米的空心圆柱体,作为现有氢罐的凸台。
图8 对铝棒采用不同处理
表面处理的描述
火焰处理
为了研究火焰处理的效果,使用丁烷气体火焰在约 1000°C 的温度下进行了火焰表面处理,距离火焰主反应区顶部到铝试样自由表面的距离为 5 厘米(图 2),在两个不同的时间(15 秒和 60 秒)。目的是观察火焰预处理对界面粘附的影响。由于第一次处理时间,选择的燃烧过程的平均速率为 14 毫米/秒。
阳极氧化过程
阳极氧化程序影响铝凸台的表面腐蚀。为了进行这种处理,Restom®Aluor Decap DDM 2050Restom®AnodiLyte 6200 和钛板分别用作清洁剂、电解质和阴极(图 3)。铝(Al)部件首先在溶液中清洗 2 分钟并干燥。铝棒在硫酸(H2SO4)中浸泡 1 小时,电流为 1.3A,电位差为 3.17V。
喷砂处理
基于图 4 所示的示意图,使用 OTMT 机器型号 OT10 进行喷砂处理。铝基板通过具有两种不同平均尺寸的 SiO2 颗粒进行喷砂处理,其中第一个网孔的平均直径为 400±30 微米,作为较大的网孔,第二个网孔的平均直径为 212±30 微米,作为较小的网孔。事实上,粗糙度是通过改变颗粒尺寸和喷砂时间来调节的,喷砂时间分别为 5 秒和 15 秒,而其他参数是固定的:喷砂距离为 5 厘米,气压为 7 巴,喷砂角度为 45°。
表格1:MDPE和PEG的熔化和结晶温度。
聚乙烯涂层通过以下方法沉积到铝基板上。在涂覆之前,样品用丙酮清洗。如图 5 所示,通过贴纸将聚合物和铝棒之间的接触表面分隔开。在这种方法中,样品在 200°C 下加热 20 分钟,然后放入 PEG 粉末浴中,通过转动使粉末覆盖样品。样品立即回到 200°C 的烘箱中放置 15 分钟。最后,通过去除贴纸,样品就可以准备进行旋转模塑了。
图9. 旋转模塑过程中烘箱和聚合物的温度演变
样品制备:旋转模塑机
一种实验室规模的旋转模塑机(LAB 40)(由 STP 制造的穿梭型)带有铝制圆柱模具,已被用于制造聚乙烯部件(如图 6 所示)。Datapaq® Tracker 遥测系统用于在加工周期中实时测量模具外壁、烘箱和内部空气的温度。在将聚合物粉末装入模具后,启动模具旋转速度和热循环。两个轴的模具旋转速度在加热和冷却过程中都是 9 和 7.5RPM。
表征方法
差示扫描量热法(DSC)测试
为了确定熔化和结晶温度,使用了“TA Instruments Q10 V9.0 Build 275”的设备。样品从环境温度放入密封的铝胶囊中,以 2°C/min 的加热速率加热到 180°C,然后冷却到环境温度。
形貌
扫描电子显微镜(SEM)(HITACHI 4800)、光学显微镜(OM)(ZEISS)和接触轮廓仪(VEECO)被用来获取表面的形貌信息。机械测试后失效表面的形貌通过 SEM 和 OM 仪器展示,以确定机械测试后的聚合物-金属联锁和微观结构。通过在特定接触力下横向移动金刚石触针来测量其垂直位移,使用接触轮廓仪检查铝表面的粗糙度。
图10 a 部件的几何形状和 b 样品的横截面
图11. 不同火焰处理时间(15秒和60秒)和未处理样品的剪切曲线。
机械测试
为了分析衬垫/铝界面的机械行为,需要设计一个独特的装置来考虑机械行为。如图 7a 所示,使用了一个特别设计的模具来进行机械测试。为了进行剪切测试,在室温下以 2 毫米/分钟的应变速率使用了 INSTRON 5881 拉伸机(图 7b)。
结果与讨论
铝棒的宏观视图
在本研究中,对铝棒进行了不同的粘附处理。图 8 展示了铝棒在不同处理前后的情况,每种处理的效果将在以下部分进行解释。为了了解每种处理对界面的微观结构和机械性能的影响,未处理的铝棒也进行了表征。
DSC 分析
DSC 测量提供了结晶和熔化温度。根据 DSC 的结果(表 1),为旋转成型过程选择了优化参数。
表 2 两种不同火焰时间及未处理样本的剪切结果” 。
旋转模塑过程
MDPE 在旋转模塑过程中的时间-温度
图 12. (a)未经过火焰处理的样品和(b)经过 60 秒火焰处理后的样品的横截面。
考虑加热和冷却阶段期间不同步骤的温度演变如图 9 所示。它还表明了 MDPE 在相变过程中的行为。在这条曲线中,有几个阶段可以监测 MDPE 的物理状态变化,如下所示:
在点 A(MDPE 的熔化温度),与内部模具表面接触的第一层聚合物颗粒达到 MDPE 的熔化温度,通过烧结转变为第一层熔融层。该部件在 B 点和 A 点之间形成。在 B 点和 C 点之间,熔融的聚合物越来越多地变得液体。在 C 点和 D 点之间,模具被放置在冷却站中,因此 MDPE 的温度下降。D 点对应于 MDPE 的结晶温度。在 D 点和 F 点之间,存在液固混合物。超出 F 点,材料完全固化,部件形成。
图 13. 阳极氧化和未经处理的样品的剪切曲线
样品的最终形状
氢气储罐在直径为 28 毫米、长度为 35 毫米的圆柱体表面与铝凸台接触。为了进行剪切测试,使用了一种创新的模具,将最终的部件切割成保持中间(10 厘米)结构(图 10a)。圆柱形接头的界面应考虑施加到该界面的剪切应力(图 10b)。样品的特定形状需要一个特殊的模板进行测试。可以注意到,凸台和衬垫之间的接触表面是凸台下半部分的外表面。
表 3. 阳极氧化和未经处理的样品的剪切结果
不同粘附处理的分析
火焰处理
火焰处理对 Al/MDPE 界面的粘附性的影响进行了分析,以提高界面的粘附性。火焰处理在两种不同时间(15 秒和 60 秒)的剪切结果如图 11 和表 2 所示。可以注意到,对于每种条件,进行了三次测试。
火焰处理后的样品与未处理样品的剪切行为相比,火焰处理对 Al/MDPE 粘附性的最大剪切应力的影响很小。剪切应力(t)值从 1.6 变为 1.9MPa。然而,火焰处理后的剪切模量(G)从 2.44MPa 增加到 7.1MPa。这个问题可以在微观尺度上进行分析。为了证明这些结果,对经过 60 秒火焰处理和未经过火焰处理的样品的微观结构进行了比较(图 12)。可以观察到,经过 60 秒的燃烧后,铝的表面相对光滑,没有明显的粗糙度。
图14:a MDPE 表面与阳极氧化铝接触,b 阳极氧化铝与 MDPE 接触。
从图 11 可以看出,当火焰燃烧时间从 15 秒变为 60 秒时,最大剪切应力略有下降。这意味着火焰燃烧时间是粘附性的一个关键参数。随着火焰燃烧时间的增加,火焰对粘附性有负面影响。应该注意的是,经过火焰处理后,断裂时的应变会降低。
阳极氧化过程
阳极氧化是通过将铝浸入酸性电解质浴中来完成的。氧离子从电解质中释放出来,与正在阳极氧化的样品表面的铝原子结合。这可以被认为是一种化学处理。MDPE 和阳极氧化铝与未经处理的样品的剪切结果的比较如图 13 和表 3 所示。
结果表明,阳极氧化过程使剪切应力增加了约三倍(从 1.6MPa 增加到 4.5MPa)。此外,剪切模量从 2.44MPa 增加到 6.48MPa。此后,最好观察一下经过剪切测试后的阳极氧化铝部分和 MDPE 表面的 SEM 显微照片(图 14)。
如果这些表面仍然光滑且未改变,则意味着这两种材料没有特定的效果,在这种处理的应用中是不可取的。可以观察到,在铝表面上,发射的聚合物颗粒是可见的,例如小岛。
图15:二氧化硅颗粒的显微镜图像:a.较小的颗粒,b.较大的颗粒。
喷砂处理
两种不同平均颗粒尺寸的 SiO2(图 15)用于喷砂处理。第一个网孔的平均直径为 400 微米,作为较大的网孔,第二个网孔的平均直径为 212 微米,作为较小的网孔。选择了两个时间间隔(5 秒和 15 秒)。通过比较两种网格的剪切曲线(图 16 和表 4),可以注意到喷砂时间的增加会增加剪切强度。结果表明,SiO2颗粒尺寸的影响是显著的。可以注意到,对于两种应用的网格,剪切模量没有变化。对于喷砂处理的样品(15 秒,作为时间持续时间和较大的网格),与未处理的样品相比,剪切强度增加了超过 14 倍。此后,有必要分析这种显著效果。为此,进行了轮廓分析和 SEM 显微照片调查。
图16:喷砂和未处理样品的剪切曲线:a 较小的喷砂样品,b 较大的喷砂样品。
图 17 显示了未经处理的铝棒和喷砂处理的样品(大网格 15 秒)的轮廓分析结果。轮廓测试的结果基于表面上峰值和谷值点的差异(Ra:算术粗糙度),公式如下:
其中 l 是基准长度,N 是基准长度上的点数,Z 是元素高度。Ra 的最小值表示表面更光滑。在未经处理的铝棒的情况下,机器计算出的值等于 0.72μm。对于喷砂处理的样品,算术粗糙度增加到 5.85μm。这些值总结在表 5 中。
图 17. 未经处理和喷砂处理的样品(15 秒大网格)的接触轮廓曲线。
接触喷砂铝的 MDPE 表面和接触 MDPE 的喷砂铝表面的 SEM 显微照片如图 18 所示。通过剪切应力测试可以清楚地看到聚合物分层的效果。喷砂操作完全去除了铝表面上的所有氧化铝,并使表面更加粗糙。这意味着熔融聚合物进一步渗透到铝表面并加强了两者之间的结合。因此,它们的粘附性显著增加。从图 18 可以看出,整个铝合金表面完全被聚合物覆盖。
表 5. 粗糙度测量
图 18 与 MDPE 和 Al 之间具有最强结合的标本有关,这证明了两个表面之间的极好粘附性。这种效应可能是由于 MDPE 和 Al 之间的机械结合引起的。
聚乙烯涂层处理
聚乙烯(PEG)涂层沉积在喷砂后的铝上以提高粘附性。图 19 显示了未经处理的铝与 PEG 涂层处理的剪切行为的比较。从表 6 可以看出,在剪切强度和剪切变形方面,剪切性能得到了改善。这一结果是由于 PEG 的接枝反应。可以注意到,PEG 对 Al 的粘附性的增加可能是由于 PE 的接枝羧基与铝表面层的羟基之间形成氢键以及形成盐键。这证实了 PEG 和铝表面层之间的化学结合。
图 18:a 与喷砂铝接触的 MDPE 表面(聚合物分层),b 与 MDPE 接触的喷砂铝表面。
如前所述,PEG 处理的应变值增加到约 65%。在微观尺度上,从图 20 可以观察到,存在大量的塑性变形。这证实了在这种情况下的韧性断裂。剪切行为分析
图 19. PEG 涂层和未经处理的样品的
剪切曲线。
各种表面处理,如阳极氧化、火焰处理、不同平均砂粒尺寸的喷砂处理以及接枝聚乙烯(PEG)涂层,在剪切加载下进行了测试。剪切测试是检查 MDPE 和 Al 表面之间粘附性的最重要和最有效的方法之一,可以分析诸如 G、τmax 和 εmax 等重要参数。这些值(G、τmax 和 εmax)总结在图 21 中。
表 6. PEG 涂层和未经处理的样品的剪切结果。
图 20. 与 PEG 涂层铝接触的 MDPE 表面的 SEM 显微照片。
如图所示,PEG 涂层样品的最大剪切应力和剪切应变大于其他样品,更适合这种应用。阳极氧化样品也比未经处理的铝和火焰处理的样品稍好。结果证实了喷砂颗粒尺寸和时间的影响。可以注意到,机械处理(喷砂)的效果显著。这些性能可以通过 PEG 涂层得到改善。可以注意到,经过火焰处理、阳极氧化和喷砂处理后的剪切模量值相同。然而,这个值比 PEG 涂层处理要大。PEG 涂层的断裂应变与其他处理无法相比。
图 21. 各种处理后的剪切行为比较:a 剪切应力,b 剪切应变,c 剪切模量。
结论
本文的主要目标是研究不同处理对提高 MDPE 与 Al 界面附着力的影响。该应用程序在氢气储罐的生产中。这些表面处理包括阳极氧化、火焰处理、不同平均粒径的喷砂处理以及聚乙烯(PEG)涂层。提出了一种创新的剪切测试来分析各种处理后的剪切行为。
尽管剪切测试结果表明,与其他可能的方法相比,喷砂处理(具有较高的粗糙度值)与 PEG 涂层结合在金属/聚合物界面上表现出更高的粘附性。可以注意到,PEG 对 Al 的粘附性的增加可能是由于 PE 的接枝羧基与铝表面层的羟基之间形成氢键以及形成盐键。这证实了 PEG 和铝表面层之间的化学结合。本文来源;Enhancement of adhesion between the polymeric liner and the metallic connector of high-pressure hydrogen storage tank