面积坐标推导三角形常应变单元(CST)
本文内容:面积坐标推导三角形常应变单元(CST)三角形面积坐标理论点这里:三角形面积坐标单元刚度矩阵如图所示,CST单元的位移场 其中 写成矩阵形式 或者 单元应变场 其中 用微分公式 得到 即可得到单元刚度矩阵 单元刚度矩阵具有显式表达式。利用python的符号计算库sympy推导单元刚度矩阵表达式import sympy as syb1, b2, b3, c1, c2, c3 = sy.symbols('b1 b2 b3 c1 c2 c3')n, k = sy.symbols('n k')# n泊松比 ,k=0.5*(1-n)MB = sy.Matrix( [ [b1, 0, b2, 0, b3, 0 ], [0, c1, 0, c2, 0, c3], [c1, b1, c2, b2, c3, b3] ] )MD = sy.Matrix( [[1, n, 0], [n, 1, 0], [0, 0, k]] )tmp = MB.T * MDtmp2 = tmp * MBprint(tmp2) 等效节点力如图所示的均匀分布荷载,按照整体坐标系将其分解为 ,等效节点力 利用公式 这里, 为三角形的边长。对于2-3边, ★★★★★★★★★★★ 往期相关★★★★★★★★★★★三角形面积坐标用面积坐标推导六节点三角形单元刚度矩阵有限元 | 二次样条梁单元有限元 | 三次样条梁单元来源:数值分析与有限元编程