首页/文章/ 详情

面积坐标推导三角形常应变单元(CST)

8月前浏览6689


本文内容:面积坐标推导三角形常应变单元(CST)

三角形面积坐标理论点这里:

三角形面积坐标

  • 单元刚度矩阵

如图所示,CST单元的位移场

 

其中

 

写成矩阵形式

 

或者

 

单元应变场

 

其中

 

用微分公式

 

得到

 

即可得到单元刚度矩阵

 

单元刚度矩阵具有显式表达式。利用python的符号计算库sympy推导单元刚度矩阵表达式

import sympy as sy
b1, b2, b3, c1, c2, c3 = sy.symbols('b1 b2 b3 c1 c2 c3')
n, k = sy.symbols('n k')
# n泊松比 ,k=0.5*(1-n)

MB = sy.Matrix( [  [b1, 0, b2, 0, b3, 0 ], 
                    [0, c1, 0, c2, 0, c3],  
                    [c1, b1, c2, b2, c3, b3] ] )

MD = sy.Matrix( [[1, n, 0], [n, 10], [00, k]] )

tmp = MB.T * MD
tmp2 = tmp * MB

print(tmp2)

  • 等效节点力

如图所示的均匀分布荷载,按照整体坐标系将其分解为    

等效节点力

 

利用公式

 

这里,    为三角形的边长。对于2-3边,

 



      往期相关

三角形面积坐标

用面积坐标推导六节点三角形单元刚度矩阵

有限元 | 二次样条梁单元

有限元 | 三次样条梁单元

来源:数值分析与有限元编程
python理论CST
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-03
最近编辑:8月前
太白金星
本科 慢慢来
获赞 5粉丝 15文章 327课程 0
点赞
收藏
作者推荐

非线性| 弧长法实例

有关弧长法的内容已经有很多了,程序也有。即便这样,离实用还有很远的路要走。这里再发一个例子。《混凝土结构有限元分析第二版》第245页的例题,书中是手算演示,我这里用python实现。python代码:import mathdef KT(): return 1def Fint(x): if x > 1 : return 1 - 0.15*(x-1) else: return 2*x - x**2f_ext = 1 # 适应书中计算,假设外荷载为1list_lamd = [0.75] # 荷载步只有一步tol = 2e-2 # 收敛参数,这个值主要是适应书中 5 步迭代conv = 2e11max_iter = 200 # 单个荷载步最大迭代步数niter = 0last_sum_lamd = 0.75 # 上一个收敛点,以下过程跟他没有关系?last_fe = last_sum_lamd * f_ext # 上一个收敛点对应的外荷载 1*0.75=0.75last_sum_x = 0.5 # 上一个收敛点print('niter x lamda conv')for delta_lamd in list_lamd: delta_f = f_ext * delta_lamd # 1*0.75 = 0.75 lamd = 1 Kt = KT() # 常刚度迭代,同一荷载步下,切线刚度矩阵相同 sum_x = 0 while ( conv > tol and niter < max_iter ): niter += 1 if niter == 1: x1 = delta_f / Kt sum_x = last_sum_x + x1 f_int = Fint(sum_x) sum_fe = last_fe + lamd * delta_f # f_resid = sum_fe - f_int else: delta_x1 = delta_f / Kt delta_x2 = f_resid / Kt delta_lamd = (x1 * delta_x2)/(x1 * delta_x1 + lamd * delta_f**2) delta_lamd = -1 * delta_lamd lamd = lamd + delta_lamd sum_fe = last_fe + lamd * delta_f # dx = delta_lamd * delta_x1 + delta_x2 x2 = x1 + dx sum_x = last_sum_x + x2 f_int = Fint(sum_x) sum_fe = last_fe + lamd * delta_f # f_resid = sum_fe - f_int x1 = x2 conv = math.sqrt( f_resid**2 ) print(format(niter, '>3d'), format(sum_x, '>15.5f'), format(lamd, '>16.6f'), format(f_resid, '>18.6e') ) last_sum_lamd = sum_fe last_sum_x = sum_xprint(last_sum_lamd)print(last_sum_x) 迭代过程如图所示代码:import numpy as npimport matplotlib.pyplot as pltx1 = np.linspace(0,1,10)y1 = 2*x1-x1**2x2 = np.linspace(1,3,10)y2 = 1 - 0.15*(x2-1)# Figure 并指定大小plt.figure(num=3,figsize=(8,5))# 绘制F图像,设置 color 为 red,线宽度是 2,plt.plot(x1, y1, color='red',linewidth=2.0)plt.plot(x2, y2, color='red',linewidth=2.0)# 四次迭代的数据iter1 = [0.5, 1.25]iter1_0 = [0.75, 1.5]iter2 = [0.5, 1.519]iter2_0 = [0.75, 1.231]iter3 = [0.5, 1.618]iter3_0 = [0.75, 1.023]iter4 = [0.5, 1.64]iter4_0 = [0.75, 0.929]iter5 = [0.5, 1.643]iter5_0 = [0.75, 0.909]plt.plot(iter1, iter1_0, label="M1", linewidth = 2, color = "green",marker='o', markersize=7)plt.plot(iter2, iter2_0, label="M1", linewidth = 2, color = "green",marker='o', markersize=7)plt.plot(iter3, iter3_0, label="M1", linewidth = 2, color = "green",marker='o', markersize=7)plt.plot(iter4, iter4_0, label="M1", linewidth = 2, color = "green",marker='o', markersize=7)plt.plot(iter5, iter5_0, label="M1", linewidth = 2, color = "green",marker='o', markersize=7)# 设置 x,y 轴的范围以及 label 标注plt.xlim(0,3)plt.ylim(0,1.7)plt.xlabel('x',fontsize = 18)plt.ylabel('F',fontsize = 18)# 显示图像plt.show() 对于荷载因子的理解有些混乱,还得继续查文献。弧长法的Python实现非线性| 弧长法算例非线性|弧长法改进来源:数值分析与有限元编程

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈