首页/文章/ 详情

异步电机矢量控制FOC若干关键问题的研究----几种磁场定向方式的介绍

1年前浏览4046

导读:接下的几期文章重点介绍异步电机矢量控制实现的几个关键问题的研究。本期文章重点介绍矢量控制FOC的原理和磁场定向的几种方式(按转子磁场定向、按定子磁场定向和按气隙磁场定向),下载资源中有文章中对应的仿真模型。

一、矢量控制技术概述

1968年Hasse提出了间接磁场定向控制的思路,1971年Blaschke提出了直接转子磁场定向的矢量控制方法。在转子磁链恒定的情况下,该磁场定向方法可以实现励磁和转矩的解耦控制,使得异步电机调速系统具有了可以比拟直流电机调速系统的动态性能。早期,异步电机由于相互耦合的特性,其变频调速系统动态性能不佳。随着磁场定向控制技术的出现,异步电机变频调速系统获得了长足的发展。之后随着高性能全控型器件如IGBT的广泛应用,才奠定了异步电机调速系统在变频调速领域的主导地位。

考虑到转子磁链观测器参数误差影响大的情况,Blaschke在1974年提出了基于可以直接测量的气隙磁场定向的矢量控制方法。但是在旋转的气隙磁场坐标系下,磁场和转矩控制不能完全解耦,需要在控制中增加解耦项。而且气隙磁场采样电路的引入,会额外增加系统成本,降低可靠性。如果不考虑磁场直接采样,在传统的电压模型磁链观测器中,定子磁链估算相对于转子磁链估算,受电机参数敏感性影响较小。与气隙磁场定向相同,定子磁场定向下,系统要实现解耦控制,需要额外增加解耦项。

在转子磁场定向系统下,系统输入输出之间的线性关系是建立在转子磁链幅值不变的前提上的。该方法需要应用准确的转矩和转子电阻参数。但实际应用中,这些参数是随着电机工作频率、温度等变化而变化,较难保证参数没有偏差。为了提高解耦控制的效果,降低其受电机参数偏差的影响,很多文章对于反馈形式进行了升级和改进。增加解耦项来实现解耦是目前提高矢量控制动态响应的一个主要方向。

磁场定向控制系统根据估算定向角度方式的不同可以分为直接磁场定向和间接磁场定向两类。在间接磁场定向系统中,磁场定向的角度通过定子角频率积分获得。在有速度传感器的系统中,转子速度直接采样获得,此时只需要估算转差,就可以估算得到同步旋转角。标准形式的间接磁场定向矢量控制框图如图(1-1)(a)所示,其中转差估算基于参考信号。间接磁场定向矢量控制具有结构简单,计算量小的优点。但这种方法下的电机驱动系统的参数敏感性较高,尤其转子时间常数误差对系统的性能影响较大。相应的,在直接磁场定向系统中,需要增加观测器,直接观测磁链幅值和角度,其控制框图如图(1-1)(b)所示。在直接磁场定向系统中,可以选择多种形式的观测器,提高系统性能,降低参数敏感性。

image.png

图1-1 异步电机转子磁场定向矢量控制框图:(a)间接磁场定向;(b)直接磁场定向


下面的内容为付费内容,购买后解锁。

内容简介:包含文章中对应的MATLAB仿真模型

电机电子电控传动系统仿真控制MATLAB
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-11-08
最近编辑:1年前
清风烈酒
硕士 签名征集中
获赞 44粉丝 1文章 30课程 0
点赞
收藏
作者推荐

空间电压矢量脉宽调制技术(SVPWM)

导读:本期文章将介绍空间电压矢量脉宽调制技术SVPWM。SVPWM调制是电机控制的基础之一。文章将从的作用、原理和实现三个角度,对SVPWM进行特彻的分析。SVPWM的全称为空间电压矢量脉宽调制技术(SVPWM,SpaceVectorPulseWidthModulation)。首先,SVPWM只是调制发波的一种手段,并不是一种控制算法。在FOC控制算法中,SVPWM的作用就是把参考电压矢量调制成与之对应的开关状态,即6路开关脉冲。6路开关脉冲给到逆变器,将直流母线电压逆变成三相电压(三相电压经过坐标变换与参考电压完全一致)连接电机的三相定子绕组。图1SVPWM的作用所以说SVPWM是一种逆变的手段。SVPWM输入是alpha和beta轴电压,输出是三相PWM占空比。通俗的说,SVPWM可以当作一个理想的电压源,控制逆变器实现对参考电压的输出。也可以把SVPWM当成是一个黑盒子,把电流环的输出作为输入指令,输出PWM比较值。SVPWM是从电动机的角度出发,其目的是使交流电动机获得理想圆形磁场。它以三相对称正弦波电压供电时的交流电动机的理想圆形磁通轨迹为基准,用逆变器不同的开关模式产生的实际磁通去逼近基准磁通圆(不同的开关状态使逆变器输出三相电压,接入电机的三相定子绕组从而在电机内部产生旋转的磁场),从而达到较高的控制性能。所以,SVPWM也可以叫磁链圆跟踪控制(它是在假想的静止坐标系下控制不同电压矢量得到的)。SVPWM的实质就是用逆变器可输出的电压与作用时间的线性组合去逼近所期望的电压空间矢量,具体的做法就是对逆变器中功率器件的开通和关断状态进行正确控制。一、SVPWM的作用为了达到控制电机的目的,电机驱动系统要有能力给电机提供频率和幅值可以变化的电压。工业电源输出电压的频率和幅值是固定的。我们首先可以将工业电源输出的电压变为直流电压源,也就是图(3-1)中大家可以看到的Vdc,这一步叫做整流。这一直流电压源经过图(1-1)中的三相逆变器就可以变换为频率和幅值可以变化的电压,这一步叫做逆变。图(1-1)中的逆变器连接电机的三个定子相绕组。此逆变器有a、b、c3个桥臂,所以被称为三相逆变器。每个桥臂上有两个开关。比如在a相上有VT1和VT2两个开关,控制a相的上桥臂和下桥臂的导通和切断。图(1-1)中的N点代表电机三相绕组的中性点。图1-1三相电压型逆变电路SVPWM技术实际上计算的是图(1-1)所示逆变器的六个开关何时导通,何时关断。图(1-1)中的逆变器是虚拟的模型,但在真实工况中,该逆变器是真实的元器件。通过控制这六个开关的导通和切断,配合左边的直流电压源,该逆变器可以在右侧三个电机定子相上产生所需要的电压正弦量。注意,后面会看到该正弦电压是PWM(脉宽调制,PulseWidthModulation)形式的。这六个开关的开关状态是离散的,所以该调制很适合离散的数字系统。

有附件
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈