内容来自于2023年一篇概括性文献:
基于GWG技术的毫米波元器件
间隙波导技术Gap Waveguide(GWG)起源于软硬表面结构AMC+EBG,周期性的引脚充当理想磁导体(PMC),实际上GWG可以被认为是一种电磁带隙结构(EBG),在特定的频率下,电磁波只被允许在特定的区域传播。GWG有三种形式:Groove GWG、Ridge GWG和Microstrip GWG。Groove GWG是一种EBG波导,具有和传统矩形波导相似的传播特性,Ridge GWG和Microstrip GWG支持准横向电磁波(QTEM)波传播。
GWG中合理的EBG单元设计可以提高工作带宽,实现低成本和高集成度设计。下图是一些研究比较多的EBG结构单元,原文中有相应的参考文献。
图1:不同的EBG单元结构
2. GWG和平面微带线之间的过渡传输结构
过渡传输结构主要作用是将芯片端供给的能量,以最小的损耗经PCB上馈入波导结构中,性能优越的过渡结构将大幅提高雷达产品的集成度。
图2:不同的转换结构
3. 基于GWG技术的天线馈电网络
天线馈电网络对于一维/二维阵列的辐射性能至关重要,低损耗的馈电网络有助于提升阵列的整体增益。为减小介质损耗,传统空心波导管常用于毫米波频段的馈电网络设计,然而空心波导不适合轻薄型阵列设计,因此引出SIW馈电网络设计。
基于 GWG 技术的天线馈电网络设计:(a)基片集成脊 GWG 馈电网络,(b)ridge GWG 馈电网络,(c)混合脊槽 GWG 馈电网络、(d)带有平面喇叭天线的脊形 GWG 馈电网络,(e)带有平面喇叭天线的基板集成脊形 GWG 馈电网络,以及(f)凹槽 GWG 馈电网络。
4. 基于GWG技术的毫米波元器件
毫米波电路和元器件是雷达传感和无线通信毫米波前端系统的基础。带通滤波器可用于抑制辐射杂散,功率分配器可用于从本地振荡器馈送信号,耦合器可用于调频连续波前端,移相器可用于用于波束扫描。槽、脊和微带线GWG技术可以支持横向电波/横向磁波/TEM波的传输,为电路和元件设计提供设计自由度。其非接触特性使得所设计的毫米波电路和元件的性能对制造和装配误差不太敏感。如图 4(a)所示,串联谐振器耦合是通过凹槽 GWG谐振器实现。此外,设计一个具有宽带共模抑制的平衡带通滤波器,它也可以由同轴线馈电,如图4(b)所示。为了减小带通滤波器的外形和重量,图 4(c)中的 Kaband 基片集成 GWG 带通滤波器被提出使用 PCB 技术。为了进一步提高带通滤波器的工作频率,图 4(d)中提出了一种薄型轻型 W 波段 GWG 带通滤波器;由于使用了 DRIE(Deep Reactive Ion Etching,深反应离子刻蚀),它具有表面贴片封装、低插入损耗和制造一致性等优点。对于 GWG 耦合器设计,提出了一种 3-dB 混合耦合器,在图 4(e) 中,该耦合器使用中间带有圆顶的脊 GWG。此外,当耦合窗口位于 GWG 路径的水平或垂直平面时,图 4(f)中的耦合窗口也可用于设计具有不同耦合水平的耦合器 。除了滤波器和耦合器,GWG技术也可以用来设计移相器。
基于 GWG 技术的毫米波电路和元件设计: (a)波导馈电Ka波段Groove GWG 带通滤波器 ,(b)具有宽带共模抑制的Ku波段Groove GWG平衡滤波器,(a)Ka波段基片集成Ridge GWG带通滤波器,(d)W波段表面贴装封装带通滤波器,(e)基于3-dB耦合器Ridge GWG ,(f) 基于Groove GWG的 0-dB 前向波定向耦合器,(g)Groove GWG 中的可重构移相器,(h)使用堆叠 GWG 的可旋转的弯波导。(i) 使用Groove GWG 的Ka波段3D OMT 馈电喇叭天线,(j)GWG Gysel 功率分配器,(k)Ka段GWG共面魔术T,和 (i)基板集成GWG交叉结构。H-pol: 水平极化;V-pol: 垂直极化。