1 研究背景及目的
论文亮点
316L/CuSn10 和CuSn10/316L界面的光学形貌:(a, b) 316L/CuSn10界面;(c, d) CuSn10/316L界面(BD表示成形方向)
316L/CuSn10界面的元素分布:(a) SEM 图像;(b-f) 界面区域的EDS元素分布,分别显示了 Cu、Fe、Cr 和 Ni元素的分布
CuSn10/316L界面的元素分布:(a) SEM 图像;(b)扫描区域的相位分布;(c-f) 界面区域的EDS元素分布,分别显示了 Cu、Fe、Cr 和 Ni元素的分布
试验研究方法
主要结果
316L/CuSn10 和CuSn10/316L两个界面处的缺陷主要包括裂纹和孔隙。相比316L/CuSn10界面,CuSn10/316L发现分层缺陷以及更多数量的裂纹,这是由于其狭窄扩散区(~160 μm)的界面结合强度较弱引起的。在材料界面处可观察到Fe-Cu系统中由于液相分离引起的孤立区域(富Cu或富Fe)和球形颗粒(富Cu或富Fe)。316L/CuSn10界面的高熔池深宽比(D/W≈1.60)展现了其熔化模式为“匙孔模式”,而CuSn10/316L界面(D/W≈0.2)则为“传导模式”。界面的微应变分析表明,316L/CuSn10的微应变明显高于CuSn10/316L界面,这归因于这两种材料的热膨胀特性差异与成形顺序。316L/CuSn10界面的结合强度(极限抗拉强度328 ± 2.7 MPa)明显高于CuSn10/316L界面。
(a)热膨胀;(b)硬度;(c)拉伸性能;(d)断口形貌
结论
本论文研究了采用不同构建策略LPBF制备CuSn10-316L多材料结构的界面特征及形成机制,揭示了不同构建策略对界面熔化模式与界面形成的作用机理。高体积能量密度(促进 Marangoni 对流、改变熔化模式)、适当的构建策略(即不同密度的元素在重力作用下的扩散)和低扫描速度(即不同材料元素的扩散时间较长)有利于加强LPBF 多材料结构的界面结合。
多材料LPBF过程的界面熔化模式:(a)在316L上成形CuSn10;(b)在CuSn10 上成形316L
LPBF过程中界面熔化行为示意图
前景与应用
论文引用与下载
doi.org/10.1016/j.cjmeam.2022.100045
团队带头人介绍
作者介绍
团队研究方向
(1)异质功能材料/智能结构金属增材制造技术
(2)大尺寸、多激光增材制造技术
(3)激光增减材复合制造技术
(4)多能量场复合增材制造技术
近年团队发表文章
[1] Di Wang, Linqing Liu, Guowei Deng, Cheng Deng, Yuchao Bai, Yongqiang Yang, Weihui Wu, Jie Chen, Yang Liu,Yonggang Wang, Xin Lin, Changjun Han. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion[J]. Virtual and Physical Prototyping, 2022, 17(2): 329-365.
[2] Di Wang, Jinhui Huang, Chaolin Tan, Wenyou Ma, Yongming Zou, Yongqiang Yang. Mechanical and corrosion properties of additively manufactured SiC-reinforced stainless steel[J]. Materials Science and Engineering: A, 2022, 841: 143018.
[3] Di Wang, Sheng Li, Guowei Deng, Yang Liu, Moataz M. Attallah. A Melt Pool Temperature Model in Laser Powder Bed Fabricated CM247LC Ni Superalloy to Rationalize Crack Formation and Microstructural Inhomogeneities, Metallurgical and Materials Transactions A, 2021, 52(12): 5221-5234.
[4] Di Wang, Xiongmian Wei, Jian Liu, Yunmian Xiao, Yongqiang Yang, Linqing Liu, Chaolin Tan, Xusheng Yang, Changjun Han. Lightweight design of an AlSi10Mg aviation control stick additively manufactured by laser powder bed fusion[J]. Rapid Prototyping Journal, 2022 (ahead-of-print).
[5] Linqing Liu, Di Wang, Guowei Deng, et al. Laser additive manufacturing of a 316L/CuSn10 multimaterial coaxial nozzle to alleviate spattering adhesion and burning effect in directed energy deposition[J]. Journal of Manufacturing Processes, 2022, 82: 51-63.
[6] Linqing Liu, Di Wang, Yongqiang Yang, Zhi Wang, Zeyu Qian, Shibiao Wu, Jinrong Tang, Changjun Han, Chaolin Tan. (2022), Effect of Scanning Strategies on the Microstructure and Mechanical Properties of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion. Adv. Eng. Mater. 2200492.
[7] Jie Chen, Yongqiang Yang, Yuchao Bai, Di Wang, Cuiling Zhao, JerryYing Hsi Fuh. Single and multiple track formation mechanism of laser powder bed fusion 316L/CuSn10 multi-material[J]. Materials Characterization, 2022, 183: 111654.
[8] Hanxiang Zhou, Changhui Song, Yongqiang Yang, Changjun Han, Meng Wang, Yunmian Xiao, Zixin Liu. The microstructure and properties evolution of SS316L fabricated by magnetic field-assisted laser powder bed fusion[J]. Materials Science and Engineering: A, 2022, 845: 143216.
[9] Zixin Liu, Yongqiang Yang, Di Wang, Jie Chen, Yunmian Xiao, Hanxiang Zhou, Ziyu Chen, Changhui Song. Flow field analysis for multilaser powder bed fusion and the influence of gas flow distribution on parts quality[J]. Rapid Prototyping Journal, 2022 (ahead-of-print).
[10] Heng Zhou, Yongqiang Yang, Di Wang, Yang Li, Shiqin Zhang, Zhiheng Tai. Powder flow simulation of a ring-type coaxial nozzle and cladding experiment in laser metal deposition[J]. The International Journal of Advanced Manufacturing Technology, 2022: 1-12.
[11] 王迪,邓国威,杨永强,陈杰,吴伟辉,张明康.金属异质材料增材制造研究进展[J].机械工程学报,2021,57(01):186-198.
[12] Di Wang, Wenhao Dou, Yuanhui Ou, Yongqiang Yang, Chaolin Tan, Yingjie Zhang, et al. Characteristics of droplet spatter behavior and process-correlated mapping model in laser powder bed fusion[J]. Journal of materials research and technology, 2021, 12: 1051-1064.
[13] 王迪, 邓国威, 杨永强, 陈杰, 吴伟辉, 王皓亮, 谭超林*.激光选区熔化成型多层结构功能梯度材料的界面组织和性能(英文)[J].中南大学学报(英文版), 2021,28(04):1155-1169.
[14] Jie Chen, Yongqiang Yang, Changhui Song, Di Wang, Shibiao Wu, Mingkang Zhang. Influence mechanism of process parameters on the interfacial characterization of selective laser melting 316L/CuSn10[J]. Materials Science and Engineering: A, 2020, 792: 139316.
来源:机械工程学报