1
研究背景及目的
增材制造技术为制造具有复杂形状的轻质部件提供了一种有效的解决方案。最近,高Sc含量的Al-Mg-Sc-Zr合金被用于选择性激光熔化工艺,以获得完全等轴晶粒结构并提高机械性能。但是,Sc是一种价格昂贵的稀土元素。随着该元素的添加量的增加,生产成本会急剧增加。因此,低Sc含量的Al-Mg-Sc-Zr合金的增材制造需要深入研究,以实现降本增效的目的。
2
论文亮点
1)开发了低Sc含量的Al-Mg-Sc-Zr合金的增材制造工艺,致密度高达99.2%。
2)建立了能量密度与成型质量的内在关系。
3)揭示了高能量密度下轻质合金熔池内匙孔形成的机理。
4)获得具有扇形特征的微观组织,抗拉强度高达451.1 MPa。
图1 增材制造过程中低Sc含量Al-Mg-Sc-Zr合金中匙孔形成机理示意图
3
试验方法
采用粉末床激光增材制造技术制造低Sc含量的Al-Mg-Sc-Zr合金,在激光功率300-400W和扫描速度400-800mm/s的范围内进行成型工艺探索。采用阿基米德排水法测试合金的密度;采用VHX-5000超精深显微镜测量合金零件的表面粗糙度;采用莱卡DMI5000M倒置式金相显微镜观察成型合金的微观组织形貌。采用HVS-30数字维氏硬度测试仪进行硬度测量。热处理是在马沸炉中进行,升温到325摄氏度后保温8小时,然后在空气中冷却。而热处理前后的拉伸性能通过CMT5205万能电子测试仪获取。
4
研究结果
6)时效处理后,抗拉强度和屈服强度分别提升了18.1%和41.3%,达到532.7 MPa和490.0 MPa。但是,断后延伸率略微降低到13.1%。
5
结论
6
前景与应用
本研究有助于具有复杂几何特征的高性能轻量化结构件快速制造,同时降低 制造成本,促进其在航空航天、汽车、船舶等领域中的应用。
引用格式:
下载链接:
团队带头人介绍
团队研究方向
近年团队发表文章
[1] Wang, Di, Linqing Liu, Guowei Deng, Cheng Deng, Yuchao Bai, Yongqiang Yang, Weihui Wu et al. "Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion." Virtual and Physical Prototyping 17, no. 2 (2022): 329-365.
[2] Liu, Zixin, Yongqiang Yang, Di Wang, Jie Chen, Yunmian Xiao, Hanxiang Zhou, Ziyu Chen, and Changhui Song. "Flow field analysis for multilaser powder bed fusion and the influence of gas flow distribution on parts quality." Rapid Prototyping Journal ahead-of-print (2022).
[3] Tan, Chaolin, Ji Zou, Di Wang, Wenyou Ma, and Kesong Zhou. "Duplex strengthening via SiC addition and in-situ precipitation in additively manufactured composite materials." Composites Part B: Engineering 236 (2022): 109820.
[4] Yuchao Bai, Cuiling Zhao, Di Wang*, HaoWang*. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2022, 299: 117328.
[5] Di Wang, Sheng Li*, Guowei Deng, Yang Liu, Moataz M. Attallah*. A melt pool temperature model in laser powder bed fabricated CM247LC Ni superalloy to rationalize crack formation and microstructural inhomogeneities[J]. Metallurgical and Materials Transactions A, 2021, 52(12): 5221-5234.
[6] Di Wang, Guowei Deng, Yongqiang Yang, Jie Chen, Weihui Wu, Haoliang Wang, Chaolin Tan*. Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials[J]. Journal of Central South University, 2021, 28(4): 1155-1169.
[7] Di Wang, Wenhao Dou, Yuanhui Ou, Yongqiang Yang, Chaolin Tan, Yingjie Zhang*. Characteristics of droplet spatter behavior and process-correlated mapping model in laser powder bed fusion[J]. Journal of Materials Research and Technology, 2021, 12: 1051-1064.
[8] Chaolin Tan, Di Wang*, Wenyou Ma, Kesong Zhou*,Ultra-strong bond interface in additively manufactured iron-based multi-materials[J]. Materials Science and Engineering: A, 2021, 802: 140642.
[9] Jie Chen, Yongqiang Yang, Shibiao Wu, Mingkang Zhang, Shuzhen Mai, Changhui Song, Di Wang*. Selective laser melting dental CoCr alloy: microstructure, mechanical properties and corrosion resistance[J]. Rapid Prototyping Journal, 2021.
[10] Yang Liu*, Huaizhong Xu, Lei Zhu, Xiaofeng Wang, Quanquan Han, Shuxin Li, Yonggang Wang*, Rossitza Setchi, Di Wang*, Investigation into the microstructure and dynamic compressive properties of selective laser melted Ti–6Al–4V alloy with different heating treatments[J]. Materials Science and Engineering: A, 2021, 805: 140561.
[11] Wang Di, Ye Guangzhao, Dou Wenhao, Zhang, Mingkang , Yang Yongqiang*,et al. Influence of spatter particles contamination on densification behavior and tensile properties of CoCrW manufactured by selective laser melting[J]. Optics & Laser Technology. 2020, 121: 105678.
[12] Xiaomin Chen, Di Wang*, Jingming Mai, et al. High-efficient micro reacting pipe with 3D internal structure: Design, flow simulation, and metal additive manufacturing[J]. Applied Sciences, 2020, 10(11).
[13] Xiaojun Chen, Di Wang*, Wenhao Dou, et al. Design and manufacture of bionic porous titanium alloy spinal implant based on selective laser melting (SLM)[J]. Computer Modeling In Engineering & Sciences, 2020, 124(3): 1099-1117.
[14] Chaolin Tan, Xinyue Zhang, Dongdong Dong, Bonnie Attard, Di Wang*, Min Kuang, Wenyou Ma, Kesong Zhou*. In-situ synthesized interlayer enhances bonding strength in additively manufactured multi-material hybrid tooling[J]. Internatianal Journal of Machine Tools and Manufacture, 2020, 155.
[15] Di Wang, Guangzhao Ye, Jingming Mai, et al. Novel micromixer with complex 3D-shape inner units: Design, simulation and additive manufacturing[J]. Computer Modeling in Engineering & Sciences, 2020, 123(3): 1061-1077.
[16] Chaolin Tan, Di Wang*, Wenyou Ma, et al. Design and additive manufacturing of novel conformal cooling molds[J]. Materials & Design, 2020, 196: 109147.