首页/文章/ 详情

动力总成弯曲模态设计注意事项

1年前浏览1085
动力总成弯曲共振的基本设计目标就是让最低的结构模态振型高于整车最高的频率发生。设计需求还提供了测试结果修正以找出试验结果与实际共振频率的差异。除了试验校正外,还应该对设计弯曲共振需求加上15%的频率安全余量。
图1 动力总成一阶弯曲振型图
对所有的动力传动系统的弯曲模态覆盖标准由实际NVH目标决定,已经发现在整车上并不是所有的弯曲模态都会产生NVH扰动,如果模态不是由很强的发动机力激励产生或者模态处于整车低响应的节点上,那么它对用户就可能不会产生较明显的扰动。对于后轮驱动的4缸机车垂直弯曲模态大多会产生NVH问题,然而对于某些装置U型驱动模态就可能不会是什么大问题。对于一辆正在生产中的整车,如果没有特别明显的NVH问题出现就没有必要再增加它的响应模态频率。但是,在当今的技术范围内我们还没有办法对一种新的整车或动力传动系统作早期的判定是否某些特殊的模态会出现问题。因此,既然在没有什么特殊的规定情况下,减少成本和重量比起结构的提高要容易得多,那么最谨慎的方法就是在每个case中都达到我们预期的设计目标。下面是达到这些要求的实际经验。
1 加强筋
对动力总成结构,加强筋是获得高刚度值的一种方法,而且还可以减少重量和成本。保持两个螺栓连接面的连续性的最大连续加强筋长度应该用到,加强筋应该沿着模态变形最大值区域和弯曲模态振型全息成像下边沿正确的角度布置。发动机加强筋应该和附件匹配的凸台混合在一起以提供刚性连接点,在许多情况下,发动机的加强筋应该延伸到铸件上以增加材料单位质量的组合性能。加强筋和断面的增加还可以使铸件在加工过程中稳定和减少废料。
图2 动力总成缸体加筋
2 深裙式缸体
在曲轴中心线下部拓展发动机缸体会增加与变速箱连接螺栓的跨度,较低的耳朵应该尽可能与油底壳上表面一样高,水平跨度应该与飞轮壳的宽度一致。较低的耳朵应该固定在油底壳连接螺栓中心线外侧而且在缸体上以较好的角度张开。一个深裙式缸体油底壳的结构变化对它本身的结构刚度没什么影响,但是可以通过较好的铸造工艺来提高。
3 油底壳的结构
连接发动机和变速箱的螺栓跨度可以随着油底壳的结构改变而增加,这个改变就是在曲柄中心线下面提供一个夹紧力,然而这就要求油底壳与发动机之间的密封条密封作用相当好。
4 缸体的后面
用最大可能的螺栓模式和加强筋可以在缸体中的螺栓孔提供一个统一的压力场,为了加强变速箱连接螺栓的安装这种加强筋一定不可去掉,而且连接螺栓应该从变速箱一侧安装在缸体的后面,还应该加厚法兰盘以防止局部变形。
图3 动力总成缸体后断面加筋
5 起动机
起动机应该用螺栓安装在曲柄中心线以上的缸体上,因为那儿的发动机和变速箱的相对运动较小,起动机应该有支撑体支撑而且还应该固定在缸体上,如果起动机必须悬空,那么就得有一个刚性支架将起动机的电刷尾端一起固定在缸体上,电机仍然该安装在缸体上以提供对变速箱的安装强度。
6 变矩器离合器壳
这个壳必须和变速箱壳一起铸造以防止其模态振型的不一致,设计时应该尽可能设计成圆锥形。控制后轮驱动发动机弯曲较合理的动力转动系统包括一个短的、刚性的延展转换器,一个匹配的万向结,一个较轻的、刚性的传动轴。这些标准已经用两条带有一个中心轴承的传动系统实现,所有的纵向滑动都可以在这个中心轴承中实现。系统通常将这个转换器的尾段移到靠近一阶和二阶模态的节点上。由于这两根轴短而且硬度高,质量较小、旋转不平衡较小因此可以降低一阶不平衡力,弯曲系统的柔性质量被降低了因此增加了共振频率。但是,这些优点全是建立在其他NVH问题继续存在和远远高于一条传动系统成本的基础上,现在的一些较轻的材料可以作为这个双传动轴的代替品。
【免责声明】本文部分内容来自网络,版权归原作者所有,仅用于学习!对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!

往期相关推荐  

相关文章,在仿真秀官网搜索:

动力总成弯曲模态对车内NVH的影响    
 
橡胶悬置与液阻悬置动态性能的比较    
 
史上最全液压悬置异响分析案例    
 
可切换液压悬置在怠速和行驶过程中的影响    

来源:汽车NVH云讲堂
铸造电机材料传动NVH控制试验螺栓
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-04-14
最近编辑:1年前
吕老师
硕士 28年汽车行业从业经验,深耕悬置...
获赞 284粉丝 678文章 1377课程 16
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈