高端产品研制具有较高的复杂度。如何做到将产品做成正向与高端,增强产品创新能力,做到“人无我有,人有我强”的程度,需要考虑如下问题:
复杂装备产品的研制过程涉及多领域,需要构建端到端需求应对与正向设计的体系,在此基础上实现设计、机械、电气、液压、控制系统等多专业设计对象的强关联,使得从逻辑到物理的流程实现设计的自动化与规范传递。
构建基于模型的系统工程体系涉及到产品的需求R、功能F、逻辑L、物理P四方面的工程信息,最大限度地降低了整体产品的复杂性,实现:
强大能力展现复杂系统(系统的系统);
深入理解每个系统的场景和行为;
完整把控接口完整性;
提高可追溯性和变更管理。
需求是客户和产品研发人员之间沟通的主要途径,涉及到需要、要求、总体指标、技术指标、技术要求、技术参数等要素。需求管理的根本目的就是要把需求工程化,让需求去指导产品的工程开发。
需求的结构化是按照产品需求进行分析分解为不同的分系统、零件设备定义任务书,分配技术指标,定义交换接口规范,最后进行系统的整合测试,以满足各种指标的要求。
需求结构化与需求工程
系统工程解决方案完全集成了开发复杂物理产品所需的跨专业建模、仿真、验证和业务流程,使组织能够快速轻松地评估更改请求或者开发新产品或系统,利用基于性能的统一系统工程方法来降低系统和产品开发总成本。
基于模型的系统工程 MBSE可以实现:
需求管理流程
功能分析与系统架构设计
系统仿真与优化
系统集成与验证
跨专业的系统开发流程
智能稳定系统是一个新增的系统,依据在前期需求层中确立的方案,在功能&逻辑层面继续细化。该子系统是在挖掘机项目中采用RFLP方法并行设计的。这意味着所有确保机器稳定性的强制性要求都已被分析、分组并与功能联系起来,以便在不考虑现有技术解决方案的情况下研究几种可能性。这种功能分析能够定义组成系统的部件的详尽列表。选择的技术解决方案在逻辑视图中进行了描述。
基于RFLP的系统工程架构搭建
根据系统复杂性的不同,可以使用系统架构的几种视图。例如,液压和电气原理图可以显示;硬件拓扑表示有助于定义要使用的最佳电子元件;软件架构可以可视化,以跟踪在循环中的硬件。
电气逻辑布线
基于模型的设计方式,构建涵盖机械部件、三维管路、三维线缆等物理设计体系,其参数往往是和需求层以及逻辑层的数据一致的,保证数据源的统一性。
物理设计
在需求、功能和逻辑之间的联系允许跟踪和证明系统符合所有要求的规范。三维物理表示法是建立最佳系统的精确研究的结果。
多学科系统仿真系统可建立整车或整机系统架构,定义多个子系统之间的耦合关系,并通过物理接口以及总线等技术,创建模板式仿真模型,不同复杂程度的系统模型可在不变的架构上进行验证,可适用于全系统的早期指标设计以及后期的详细性能验证。
仿真验证是针对具体的物理系统行为进行的,比如车辆控制系统、传动系统等。
在完成以上的需求结构化、架构设计和仿真验证后,接下来进行端到端需求的追溯和影响性分析,可以看到,不同的需求条目关联着不同的系统模型和逻辑行为,整个需求覆盖度较高,以及需求追溯性完整的时候,才能保证该研发产品的完整性。
需求追溯到范围包括:
建立全局各层级需求与设计/仿真/试验数据的追溯范围;
实现产品研发全寿期各阶段交付物的追溯关系建立;
对各个开发阶段交付物与需求规格之间的追溯分析:可追溯性分析、模型比较、模式和规则的检查
需求追溯是直观展现众多复杂需求条目之间的关联性,识别无效或错误需求,分析需求覆盖率,完善整个研发流程。
基于模型的系统工程为企业提供源动力
达索系统3DEXPERIENCE平台能够基于3D数字化模型和单一数据源的系统应用模式,基于系统工程方法构建企业的正向研发体系,通过系统在研发流程、建模仿真、测试验证、平台建设等领域的应用,实现高端产品的创新性研发,为企业提供发展的源动力。