.1.
前言
直升机由于其特有的前向、侧向、后向以及悬停和垂直飞行等低空高机动飞行特性,在国防、国民经济建设和社会公益事业等各方面发挥着不可替代的重要作用。为了满足日益提高的使用要求,直升机构型和技术在持续不断地创新和发展。在使用需求拉动下,现代直升机设计不断综合采用最新的科学技术和项目管理方法,牵引总体设计理念和思路不断创新,使总体设计方法不断改进和发展。随着技术复杂程度的不断提高,研制一种新的直升机,从设计方案的提出,到试制、试验、生产和投入使用,仍然需要长达若干年的周期。在直升机的整个研制周期内,需要进行大量的使用需求论证、概念构型分析、理论模型计算、设计图纸编绘、试制总装生产和试验试飞验证等工作。直升机总体设计贯穿和影响项目的整个研制过程,总体设计方案的优 劣决定了项目的研制能否成功。因此,总体设计理念和设计方法始终是直升机技术研究的重点,并且随着直升机型号和技术的发展也在同步地改进和发展。
直升机总体设计,前端直接对接用户使用要求;后端承担着分解设计要求,对全机结构及各系统的设计、试验和制造成功并使全机具有最佳综合效能的重大责任。在直升机发展历程中,随着直升机型号、相关学科专业理论和技术的发展,直升机总体设计先后发展和使用了原准机设计法、参数统计法、优化设计法和现代多学科设计优化(MDO)法等多种方法,对直升机的型号发展起到了极为重要的作用。随着直升机新构型的不断出现,新的项目管理理念和方法的应用,直升机空气动力学、飞行力学、结构动力学、声学等学科以及数值分析和仿真技术等支持技术的不断发展,新的直升机总体设计技术将不断持续改进和完善。
.2.
直升机总体设计的基本思路
按照中国飞行器研制程序,直升机研制划分为论证、方案、工程研制、设计定型和生产定型5个阶段,如图1所示。按美国和欧洲等国的习惯,直升机设计过程划分为概念设计、初步设计和详细设计3个阶段,基本和图1中前3个阶段的工作内容相对应,如图2所示。总体设计是直升机研制过程中承上启下的关键环节,具有全局性影响的重大决策基本上都要在总体设计中做出。
据统计分析,在直升机的整个研发过程中,总体设计所用时间至多占总工作时间的20%~25%,所耗资金占总资金的 5%~10%,但是却决定了直升机全寿命周期费用的75%~85%;飞行器设计成本与时间的关系如图3所示。而在飞行性能、飞行品质、生存力、对环境的影响以及安全性、可靠性、维修性、可测试性、保障性和适用性等方面,总体设计均起着非常关键的作用。
图4通过雷达示意图显示了总体设计方法在综合效能、研制成本、研制周期和研制风险等方面对直升机型号研制产生影响的比重,由图可见,总体设计基本决定了直升机的综合效能和成本周期,是直升机型号研制的关键技术。
现代直升机使用要求高、技术难度大、结构系统复杂,各分系统不仅自身技术复杂而且相互耦合,从而对总体 设计提出了更高的要求。如何在概念设计阶段合理确定 优选的总体初步方案,怎样 在初步设计阶 段 获 得合 理的设计综合,在详细设计阶段能够按期保质完成设计分析、确定设计图样和工艺方案等,都取决于所采用的先进的总体设计理念和科学合理的总体设计方法。综合权衡空气动力学、飞行力学、结构强度、振动声学、动力装置、飞行控制、综合航电、材料工艺等多学科专业,最终可获得满足使 用要求并具有最佳综合效能的直升机总体设计方案。实 践证明,总体设计思路正确、总体设计方法科学,不仅可以获得满意的直升机设计方案,使直升机具有很高的使用效能,而且能够有效地提高直升机的研制质量、缩短型号研制周期、降低型号研制成本。
图1 直升机研制过程
FIG.1 Development Process of a helicopter
图2 传统的总体设计研究方法
Fig.2 Traditional general design and development approach
图3 飞行器设计成本与时间的关系
FIG.3 Relationship between aircraft design cost and time
图4 总体设计方法影响性所占比重
Fig.4 Influence proportion of general design technology
.3.
直升机总体设计的传统方法
按照业内公认的划代标准,直升机目前已经发展到了第四代。实用型直升机出现在20世纪30年代末,第一代直升机的技术还不很成熟,除了安全性问题,总体设计主要关注于直升机的基本飞行性能;总体设计方法基本上是借鉴固定翼飞机和旋翼机的设计方法。自转旋翼机的发展比直升机起步早约15年,其旋翼技术为直升机的发展奠定了基础。
20世纪60年代初至70年代末,第二代直升机发展很快,直升机型号大量增加,在各领域得到了广泛使用,积累了丰富的直升机研制和使用经验,直升机总体设计方法逐步完善和系统化。
这一阶段的总体设计重点从功能设计开始转向性能设计,主要采用以下几种方法:
1)原准机设计法。参考现有的相近成熟机型,确定直升机总体参数初始值、总体气动初步布局、系统初步方案和重量估算,在此基础上进行飞行性能分析和成本效 能分析等,并与使用要求比较,经逐步调整得到最终总体设计方案。
2)统计分析设计法。建立已有直升机的主要设计参数统计数据库,对大量设计参数进行相关性分析,采用多元回归等方法,建立起直升机主要参数和统计参数之间的统计关系函数表达式。
这样,设计者可根据使用要求,依据统计关系式对直升机的总体设计参数进行初步选择。
3)参数分析法。根据使用要求中的某项主要要求初步确定直升机的主要总体参数,然后根据其他任务要求逐步确定其余总体参数。这种总体设计方法通常采用直升机起飞重量或燃油重量作为平衡参数,应用部件和系统 统计重量公式和直升机性能分析模型作为设计和分析工具。传统的总体设计方法主要依赖于参考原准机和统计数据分析,依赖 设计者的以往经验。其特点是物理概念清晰,设计过程简明,设计目标单一。但因为受各学科专业理论模型和计算条件限制,设计考虑的因素比较少;大多数情况下,只有直升机飞行性能能够得到比较系统的分析,难以同步计入飞行力学、动力学、声学等学科的影响,也难以同步分析动力装置等主要系统和部件的设计参数,使设计参数调整的范围非常有限,从而无法在短时内形成多个可行的总体设计方案以进行分析比较,并从中选择最好 的方案。在后续详细设计阶段对直升机作全面深入的各学科专业特性分析时,往往因为个别特性不能完全满足使用要求或设计规范要求而必须对总体设计方案作一些必要的调整,这样就有可能导 致研制周期延长和成本增加。
.4.
直升机总体设计优化方法
伴随着系统工程方法 论和计算机技术及优化理论的迅速发展,直升机总体设计优化技术逐渐发展并成熟起来,注重直升机系统综合效费比的直升机方案评估被逐步引入到直升机研制过程中,从而形成了输入输出设计闭环。基于优化设计的总体设计方法在第三代直升机研制中得到广泛应用,对直升机型号的发展起到了积极的推动作用。
在直升机总体设计应用的初步阶段,优化技术在总体参数优化选择和在空气动力学、动力学、旋翼、结构等主要学科、主要系统部件的性能参数设计优化上的应用几乎同步开展。早期的直升机总体优化设计思路大体上沿袭了传统总体设计的思路,但是学 科专业的覆盖面和包含的设计信息量远远超过了传统设计方法。最重要的是,由于采用了先进的计算技术,得益于计算机计算速度的快速提高,在设定的目标函数和约束条件下,可以快速形成多个设计方案以进行综合效能评估,从中选出满足使用要求的最佳设计方案 ,从而更有效地提高总 体设计质量和缩短设计周期。国外以VASCOMP,HESCOMP和GTPDP为基础,结合优化算法分别形成 了比较成熟的直升机总体设计优化软件,乔治亚理工学院还开发了适合单旋翼带尾桨式和包括倾转旋翼机在内的多种新构型直升机概念设计的CIRADS软件系 统。国内南京航空航天大学和中国直升机设计研究所也比较系统地开展了这方面的研究和应用工作。
为了更好地发挥总体设计在对接、分解使用要求、协调相关学科专业和各系统部件尺寸、性能要求的功能,使设计方案能够在总体和主要学科专业、主要系统部件两方面同步获得满意的结果,美国麦道公司将直升机总体参数优化和部件参数优化结合起来,探索开展了直升机总体多层次优化设计。顶层上对直升机型式、总体参数及主要尺寸进行优化选择;在局部优化部分,对直升机的关键特性和关键部件性能进行优化,其流程如图5所示。在部件优化模块中,包含了旋翼桨叶翼型优化、直升机性能优化、气动弹性稳定性优化和结构优化等内容。在该设计方法中,明显体现了并行工程的指导思想。
.5.
直升机总体参数多学科设计优化
图5 直升机设计中的多层次优化方法
FIG.5 Multilevel optimization approach in helicopter design
图6 直升机总体多学科设计优化模型数据流程图
FIG. 6 Date and process flowchart for a helicopter preliminary multidisciplinary design optimization
图7 多学科综合与物基模型的关系
FIG.7 Relationshps between multidisciplinary synthesis and sizing and physicsbased models
.6.
现代直升机总体设计方法
除多学科设计优化技术外,众多学科专业分析模型、数值计算方法以及计算机辅助设计和计算工具(CAD、CFD和 ANSYS等)在直升机总体设计中得到了综合应用。随着第四代直升机和新构型直升机的发展与使用,直升机总体设计方法日益体现出系统工程思想和并行工程思想耦合的特点。从纵向来说,总体设计要采用面向用户、面向需求、面向全寿命周期的设计理念;从横向来说,总体设计要同步综合协调各主要学科专业以及主要系统部件特性,融合多学科设计、大规模并行计算和优化设计于一体,不断 提升直升机总体设计的综合化、智能化和系统化水平。
现代直升机总体设计强调设计综合。乔治亚理工学院的综合产品/过程研发模型(IPPD)是一个典型的直升机设计综合模型。在计算机综合环境下,按照从顶层向下的设计决策过程、综合产品的设计驱动系统工程方法和设计过程驱动的质量工程方法,结合多学科设计优化方法,可以同时从系统全寿命周期过程和多学科并行分析综合进行直升机总体设计,其流程如图8所示。该模型涵盖了从概念设计到制造工艺的整个过程,综合了各主要学科的计算分析(见图7)。美国陆军AFDD Advnced Desing Office从20世纪70年代就致力于开发PSDE软件用于常规构型直升机总体方案设计。在PSDE基础上形成了 RASH优化软件,并先后开发了适用于复合直升机的 HELO软 件、适用于倾转旋翼机的TR软件以及适用于ABC旋翼直升机构型的PD-ABC软件等直升机总体设计软件,并最终开发出适用于多种构型直升机总体设计的RC软件。21世纪以来,综合直升机分析和设计的最新成果,开发了NDARC(NASA Design and Analysis of Rotorcraft)旋翼飞行器综合分析设计系统 ,如图10所示。该模型的主要功能是设计直升机的总体技术方案,并评估设计方案的综合性能。其主要特点是可以适用于单旋翼带尾桨构型、倾转旋翼机构型、双旋翼纵列式构型、刚性双旋翼共轴式构型和带辅助推力(拉力)装置的复合式以及由旋翼、机翼、尾面和起落架等各种部件组合构型的各类旋翼飞行器。NDARC模型的另一特点是集成飞行性能、气动特性、飞行力学和结构等高精度分析模型,采用代理模型来计算旋翼的诱导功率和型阻功率等特性数据,和 CAMRADⅡ这样的综合分析模型相比较,可以极大地缩短设计计算时间和降低设计成本。
NASA开发的多目标设计分析和优化工具 OpenMDAO和 NDARC模型进行了结合。其中,OpenMDAO能够提供开放的计算环境,可以综合多学科分析模型进行自动分析,在各计算分析模型之间进行数据交换,并分别以串行方式或并行方式进行各学科计算分 析;同时,OpenMDAO还综合了一组优化程序,可用于进行直升机总体顶层分析。除多学科设计优化技术外,可以利用直升机总体设计工具、旋翼气动分析和结构分析工具、声学分析工具以及参数几何工具来开展直升机总体设计和进行各学科特性分析。OpenMDAO 多 学 科 设 计 环 境 如 图 11所示。法国的 ONERA目前正在开发一种新的 直升机总体设计软件CREATION,该软件的核心是称之为目标单元的飞行性能和环境影响 (声学和大气污染等)。围绕这两个核心模块,建立了直升机任务和规范、构架和几何、重量和结构(气动弹性)、空气动力学和动力装置等5个功能单元,用于分析评估直升机的飞行性能和对环境 的影响。这7个单元分别分为3个层级:在 “零”级单元中,采用简单的统计和分析模型;在一级单元中,采用封闭的分析模型;在二级单元中则采用了数值计算模 型。CREATION的 构 架 在 平 面 上 由不同学科模块、在垂直方向由3个不同层级单元的不同复杂程度的分析模型构成。在垂直方向,低层级单元对应初步概念设计,高层级单元对应详细总体设计,低层级单元为高层级单元的深入分析提供必要参数。在平面构架内,在同一层级内的分析模型,分别对应初步概念设计、详细总体设计或对方案的全面评估。
图8 乔治亚理工学院的综合产品/过程研发模型(IPPD)过程
FIG.8 Integrated product and process development (IPPD) process of Georgia Institute of Technology
图9 分层的IPPD流程
FIG.9 Hierarchical IPPD process flow
CREATION是目前最新的直升机总体设计模型,具有以下4个主要特点:
1)综合了多学科设计优化方法。
2)体现了多层次优化思想。
3)根据实际需要或掌握的数据的多少,既可以进行初步概念设计,也可以进行复杂的总体设计方案评估。
4)除了常规直升机性能特性,针对现代直升机使用要求,还包含了对环境影响的分析评估。
图10 美军 AFDD开发的 NDARC系统组成
FIG.10 Components of NDARC developed by US AFDD
图11 多学科 OpenMDAO旋翼飞行器分析环境示例
FIG.11 Example of multidisciplinary OpenMDAO rotorcraft analysis environment
.7.
直升机总体设计方法发展展望
直升机型号正处于由第四代向第五代发展的过程,无论是军用还是民用直升机,使用要求都在不断提高。军用方面,随着现代战争对抗手段的快速发展,军用直升机使用环境日趋严酷,研发飞行速度更快、机动性能更好、生存能力更强、航电武器更先进、可适应全天候恶 劣环境作战的型号是军用直升机型号和技术发展的必然趋势。民用方面,随着对经济型、安全性、可靠性、舒适性和环保性等要求越来越高,市场竞争越来越激烈,开发全寿命周期成本低、安全可靠、低噪声、低振动、低污染的型号以及技术,是民用直升机领域的基本方向。这些对直升机总体设计提出了新的挑战。进入21世纪以来,基于模型的复杂系统工程管理思想为直升机总体设计注入了新的理念,与直升机相关的各学科专业的理论和分析模型发展也很快,新的学科不断出现,计算精度、置信度和复杂度越来越高,相互之间的耦合关联越来越紧密。计算流体动力学、有限元分析等数值计算技术、各种优化计算技术、数字设计技术(如 CAT-IA,UG和SOLIDWORKS等)以 及 各 种 商 用 软件(如FLUENT,ANSYS,AQAQUS),为直升机总体设计提供了更好的基础。新时期直升机总体设计技术发展将呈现以下几方面特点:
1)在设计理念上,将进一步综合并行工程和基于模型的复杂系统工程管理思想。横向将尽可能同步计入各传统学科和新兴学科的影响,完整地分析和评估直升机的综合使用效能;纵向将尽可能地从设计阶段向前后延伸,前端按照面向需求的基于模型的复杂系统工程理念和使用要求无缝对接,后端尽可能提早计入详细设 计、工程制造、试验试飞和使用维护对总体设计的影响,使得到的直升机总体方案在全面满足使用要求的同时,具有很高的质量和置信度。
2)从具体设计方法来说,充分利用多学科设计优化、全过程设计综合、分阶段分层次进行总体方案设计和评估,充分采用各种理论物理模型、数值计算技术、数字设计技术、优化计算技术以及各种成熟商用软件作为设计工具和手段,并采用更高效的代理模型来替代复杂的理论分析模型,完善直升机总体设计手段,提高总体设计效率。
3)为适应新构型直升机发展的需要,直升机总体设计必须不断扩大分析模型,拓展考虑因素的范围。目前,除了相对比较成熟的倾转旋翼机,共轴刚性双旋翼高速直升机、涵道矢量推力复合式直升机和双螺旋桨旋翼机翼复合式构型直升机等新构型均已进入到验证机阶段。这些新构型直升机具有许多常规直升机所没有的特点,构造和操纵复杂,气动干扰和气弹耦合严重,在直升机总体设计阶段必须计入这些特点。
4)总体设计将持续不断地吸收直升机各学科技术的最新成果,使直升机总体设计模型能更准确地描述和反映直升机的特性。近年来,先进旋翼气动外形及新型桨尖设计,先进无轴承旋翼桨毂设计,高效高精度旋翼空气动力数值模拟、旋翼多体动力学气动弹性耦合稳定性分析,旋翼/机体耦合动力稳定性主动控制(包含非定常、非线性和可时变的旋翼自由尾迹大机动飞行动力学),高带宽权限飞行控制以及直升机健康与使用完好性监测等新技术,为直升机总体设计提供了新的可精确描述直升机特性的理论分析和设计工具。
.8.
结束语
End
--------------------------------------------------
本内容来源于互联网,版权归原作者所有,供学习交流使用,严禁商用,如有侵权请联系我们删除。
--------------------------------------------------