化学研究中可能经常需要绘制电子轨道,来描述原子或分子中电子的波函数。通常,它们是通过电子结构软件(如高斯程序 Gaussian)以多维数据集文件(Cube 文件)形式输出的。这些文件包含三维网格中给定轨道的体数据。实现多维数据集文件可视化的应用程序有很多(如 VMD 或 GaussView),但我在这里想利用 Mathematica 的功能来轻松地合并图形, 以及使用它的过程自动化能力来高效地创建动画中的帧。首先,我们需要一个从多维数据集文件中提取数据的函数。在这个过程中, 我们将创建一个 XYZ 文件的文本,这个格式也是由高斯开发的。函数 OutForm 用于模拟其他编程语言中的 printf 函数。
OutForm[num_?NumericQ, width_Integer, ndig_Integer, OptionsPattern[]] := Module[{mant, exp, val}, {mant, exp} = MantissaExponent[num]; mant = ToString[NumberForm[mant, {ndig, ndig}]]; exp = If[Sign[exp] == -1, "-", "+"] <> IntegerString[exp, 10, 2]; val = mant <> "E" <> exp; StringJoin@PadLeft[Characters[val], width, " "] ];ReadCube[cubeFileName_?StringQ] := Module[ {moltxt, nAtoms, lowerCorner, nx, ny, nz, xstep, ystep, zstep, atoms, desc1, desc2, xyzText, cubeDat, xgrid, ygrid, zgrid, dummy1, dummy2, atomicNumber, atomx, atomy, atomz, tmpString, headerTxt,bohr2angstrom}, bohr2angstrom = 0.529177249; moltxt = OpenRead[cubeFileName]; desc1 = Read[moltxt, String]; desc2 = Read[moltxt, String]; lowerCorner = {0, 0, 0}; {nAtoms, lowerCorner[[1]], lowerCorner[[2]], lowerCorner[[3]]} = Read[moltxt, String] // ImportString[#, "Table"][[1]] &; xyzText = ToString[nAtoms] <> "\n"; xyzText = xyzText <> desc1 <> desc2 <> "\n"; {nx, xstep, dummy1, dummy2} = Read[moltxt, String] // ImportString[#, "Table"][[1]] &; {ny, dummy1, ystep, dummy2} = Read[moltxt, String] // ImportString[#, "Table"][[1]] &; {nz, dummy1, dummy2, zstep} = Read[moltxt, String] // ImportString[#, "Table"][[1]] &; Do[ {atomicNumber, dummy1, atomx, atomy, atomz} = Read[moltxt, String] // ImportString[#, "Table"][[1]] &; xyzText = If[Sign[lowerCorner[[1]]] == 1, xyzText <> ElementData[atomicNumber, "Abbreviation"] <> OutForm[atomx, 17, 7] <> OutForm[atomy, 17, 7] <> OutForm[atomz, 17, 7] <> "\n", xyzText <> ElementData[atomicNumber, "Abbreviation"] <> OutForm[bohr2angstrom atomx, 17, 7] <> OutForm[bohr2angstrom atomy, 17, 7] <> OutForm[bohr2angstrom atomz, 17, 7] <> "\n"]; , {nAtoms}]; cubeDat = Partition[Partition[ReadList[moltxt, Number, nx ny nz], nz], ny]; Close[moltxt]; moltxt = OpenRead[cubeFileName]; headerTxt = Read[moltxt, Table[String, {2 + 4 + nAtoms}]]; Close[moltxt]; headerTxt = StringJoin@Riffle[headerTxt, "\n"]; xgrid = Range[lowerCorner[[1]], lowerCorner[[1]] + xstep (nx - 1), xstep]; ygrid = Range[lowerCorner[[2]], lowerCorner[[2]] + ystep (ny - 1), ystep]; zgrid = Range[lowerCorner[[3]], lowerCorner[[3]] + zstep (nz - 1), zstep]; {cubeDat, xgrid, ygrid, zgrid, xyzText, headerTxt} ];
(滑动屏幕查看全部代码)
如果需要创建多维数据集文件,可以使用以下函数:
WriteCube[cubeFileName_?StringQ, headerTxt_?StringQ, cubeData_] := Module[{stream}, stream = OpenWrite[cubeFileName, FormatType -> FortranForm]; WriteString[stream, headerTxt, "\n"]; Map[WriteString[stream, ##, "\n"] & @@ Riffle[ScientificForm[#, {3, 4}, NumberFormat -> (Row[{#1, "E", If[#3 == "", "+00", #3], "\t"}] &), NumberPadding -> {"", "0"}, NumberSigns -> {"-", " "}] & /@ #, "\n", {7, -1, 7}] &, cubeData, {2}]; Close[stream];]
接下来,我们需要用该函数来绘制轨道:
CubePlot[{cub_, xg_, yg_, zg_, xyz_}, plotopts : OptionsPattern[]] := Module[{xyzplot, bohr2picometer, datarange3D, pr}, bohr2picometer = 52.9177249; datarange3D = bohr2picometer {{xg[[1]], xg[[-1]]}, {yg[[1]], yg[[-1]]}, {zg[[1]], zg[[-1]]}}; xyzplot = ImportString[xyz, "XYZ"]; Show[xyzplot, ListContourPlot3D[Transpose[cub, {3, 2, 1}], Evaluate[FilterRules[{plotopts}, Options[ListContourPlot3D]]], Contours -> {-.02, .02}, ContourStyle -> {Blue, Red}, DataRange -> datarange3D, MeshStyle -> Gray, Lighting -> {{"Ambient", White}}], Evaluate[ FilterRules[{plotopts}, {ViewPoint, ViewVertical, ImageSize}]]] ];
让我们来看一个实例。首先,复 制并在浏览器中打开此链接:https://dl.dropboxusercontent.com/s/rdsxcnqudn1s76n/cys-MO35.cube ,这是一个多维数据集文件,将该文件保存到你的基目录下:
{cubedata,xg,yg,zg,xyz,header}= ReadCube["cys-MO35.cube"];
然后通过下式绘图:
CubePlot[{cubedata, xg, yg, zg, xyz}]
如果要制作一个动画文件,我们当然希望所有的图像都具有完全相同的视角(ViewAngle)、视点(ViewPoint)和视图中心(ViewCenter)。当将这些选项赋给 CubePlot 时, 它将直接提供给 Show 函数。
vp = {ViewCenter -> {0.5, 0.5, 0.5}, ViewPoint -> {1.072, 0.665, -3.13}, ViewVertical -> {0.443, 0.2477, 1.527}};CubePlot[{cubedata, xg, yg, zg, xyz}, vp]
最后,您还可以使用通常用于 ListContourPlot3D 的任何选项。
CubePlot[{cubedata, xg, yg, zg, xyz}, vp, ContourStyle -> {Texture[ExampleData[{"ColorTexture", "Vavona"}]], Texture[ExampleData[{"ColorTexture", "Amboyna"}]]}, Contours -> {-.015, .015}]