首页/文章/ 详情

国产激光干涉仪科学家:北京交通大学冯其波教授——激光高精度多参数快速综合测量仪

8小时前浏览3

一.个人介绍:

  

 

  北京交通大学二级教授、博士生导师,光学工程学科责任教授,北京市优秀教师,广东省东莞市特色一类人才。2005年~2017年担任北京交通大学理学院院长。现担任中国仪器仪表学会光机电技术与系统集成分会、设备结构健康监测与预警分会副理事长、中国计量测试学会计量仪器专业委员会副主任委员、中国光学学会理事、中国光学工程理事、全国设备结构健康监测标准化工作组副主任委员等学术职务。长期从事光电检测方面教学科研工作。主持国家自然科学基金重大科研仪器研制项目、重点项目、国家863等100多个项目,累计科研合同经费近1亿人民币;发表论文200余篇,其中SCI检索期刊论文60余篇,获得国家发明专利50余项,包括4项美国、2项欧洲专利,获得省部级科技成果奖一等奖3项,二等奖3项;主持的轮对几何参数与故障动态检测关键技术研究成果实现产业化,产值超过4亿元人民币。

1979-1983年于合肥工业大学精密仪器系攻读学士学位;

1983-1986年于合肥工业大学精密仪器系攻读硕士学位;

1986-1990年于合肥工业大学精密仪器系任教;

1990-1993年于清华大学精密仪器系攻读博士学位;

1993起进入北方交通大学工作,历任讲师、副教授,现任北京交通大学教授 、博士生导师,理学院副院长,2005年-,任理学院院长;

1998年-1999年受国家留学基金委选派在美国University of North Carolina at Charlotte 作访问学者。

2003年以来先后出访日本、韩国、美国、加拿大、英国、法国、台湾等国家和地区。

第一届中国仪器仪表学会设备结构健康监测与预警分会 副理事长。

第六届中国计量测试学会理事会常务理事。

第七届中国光学学会理事。

全国光电测量标准化技术委员会委员。

中国仪器仪表学会光机电技术与系统集成分会常务理事。

二.科研项目

主持的纵向项目(50万以上)

科技部雄安科技创新专项任务,激光高精度多参数快速综合测量仪研发与应用(2022XAGG0200),20220/-2024/07,300万. 

红果园省部级"企事业"(新),微型原位高精度六自由度相对位姿测量系统,202108-202202,582万.

红果园省部级"企事业"(新),高精度角度测量装置生产、装调、检测,202107-202112,96万.

国家自然科学基金重点项目:高速重载极端条件下轮对状态动态监测基础问题与关键技术研究,2020.1-2024.12.300万

国家重大科研仪器研制项目:面向五轴数控机床的激光高精度多参数快速综合测量仪研制与应用,2016.1-2020.12,845万.

国家自然科学基金“面上”:轮对几何参数在线测量方法与动态误差补偿的研究,2013.1-2016.12,80万.

国家自然科学基金“重点”:激光六自由度误差同时测量仪的研制,2011.1-2013.12,180万.

863项目:重载铁路桥梁和路基检测与强化技术-重载铁路路基静动力性能检测、连续检测、实时监测与状态评估技术研究,2009-2011,100万.

863项目:客运专线路基沉降全方位实时监测技术的研究,2007.12-2009.12,100万.

主持的主要横向项目 (50万元以上)

列车轮对智能检测及全寿命周期管理系统研发与产业化获东莞市第三批创新科研团队支持,总经费4000万,其中政府支持1000万.

北京交通大学:轨道交通检测仪器与设备研制,2016-2020,180万.

北京交通大学:声屏障检测技术,2014.7-2015.12,60万.

北京交通大学:机车轮对几何参数动态在线测量系统 ,2013.10--2014.6,100万.

北京交大创新科技中心:轨检车用专用激光线光源3,2011.12--2012.3.64万.

北京交大科技发展中心:非接触式静态轨道几何状态检测小车,2005.10-2006.02,96万.

三.教学工作

1.开设《光电检测技术》等本科生主干课程和《光学测量》博士生学位课,曾被学生评为最受欢迎的教师;

2.《大学物理实验》国家级精品资源共享课负责人;

3.共招收博士研究生37名,其中25名毕业获得博士学位,1名博士毕业获得国家杰出青年基金;共招收76名硕士研究生,其中57毕业获得硕士学位;

4.2013年被评为北京市优秀教师。

四.论文/期刊

1.        Guo Xiaoxuan; Ji Zhenyan; Feng Qibo; Wang Huihui; Yang Yanyan; Li Zhao. URS: A Light-Weight Segmentation Model for Train Wheelset Monitoring, IEEE Transactions on Intelligent Transportation Systems, 2023,24(7):7707~7716.

  1.         Zheng Fajia; Long Fei; Zhao Yuqiong; Yu Chunyu; Jia Peizhi; Zhang Bin;Yuan Ding; Feng Qibo*.High-Precision Small-Angle Measurement of Laser-Fiber Autocollimation Using Common-Path Polarized Light Difference. IEEE Sensors Journal, 2023,23(9):9237~9245

  2.         Zheng Fajia; Liu Zhijia; Long Fei; Fang Hongjun; Jia Peizhi; Xu Zhiming; Zhao Yuqiong; Li Jiakun; Zhang Bin; Feng Qibo*. High-precision method for simultaneously measuring the six-degree-of-freedom relative position and pose deformation of satellites. Optics Express,2023, 31(8):13195~13210

  3.         Fu Wenjie; He Qixin*; Feng Qibo; Li Jiakun; Zheng Fajia; Zhang Bin. Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review. Sensors,2023, 23(IS 8):3916/DI 10.3390/s23083916

  4.         Qian Yibin; Li Jiakun*; Feng Qibo; He Qixin; Long Fei. Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber. Sensors,2023, 23(IS 8)/DI 10.3390/s23084108.

  5.         Gao Jiongye; Zhang Bin*; Feng Qibo; Shen Xu; Xue Yong; Liu Jiacheng. Speckle Measurement for Small In-Plane Vibration Using GaAs, Sensors, 2023,23(5):2724.

  6.         He Qixin*; Chang Jvqiang; Li Mengxin; Li Jiakun; Feng Qibo. Oxygen detection based on Faraday modulation spectroscopy and wavelength modulation spectroscopy: A comparison. Microwave and Optical Technology Letters,2023, 65(IS 5):1353~1358.

  7.         Jia Peizhi; Li Peng; Zheng Fajia; Feng Qibo*; Zhang Bin. Simultaneous measurement of 5DOF spindle error motions in CNC machine tools, Applied Optics, 2022,61(19):5704-5713/10.1364/AO.456727.

  8.         Ji Zhenyan*; Song Xiaojun; Feng Qibo; Wang Haishuai; Chen Chi-Hua; Chang Chin-Chen. RSG-Net: A Recurrent Similarity Network With Ghost Convolution for Wheelset Laser Stripe Image Inpainting, IEEE Transactions on Intelligent Transportation Systems,2022/10.1109/TITS.2022.3176222.

  9.     Chang Jvqiang; He Qixin; Li Jiakun; Feng Qibo. Oxygen detection system based on TDLAS-WMS and a compact multipass gas cell,    Microwave and Optical Technology Letters .2022/10.1002/mop.33203.

  10.     Peizhi Jia; Bin Zhang; Fajia Zheng and Feng Qibo*. Comprehensive measurement model of geometric errors for three linear axes of computer numerical control machine tools. Meas. Sci. Technol. 33(2022)015202.

  11.     Ran Yunfeng; He Qixin; Feng Qibo*; Cui Jianying. On-Site Calibration Method for Line-Structured Light Sensor-Based Railway Wheel Size Measurement System. Sensors 21(2021)6717.

  12.     He Qixin; Li Jiakun; Feng Qibo*. Development of a Mid-Infrared Cavity Enhanced Formaldehyde Detection System. Spectroscopy and Spectral Analysis 41(2021)2077.

  13.     Gao ZH; Zhang WX; Yan BX.; Kong XX.; Zhao YS.; Wu Z.; Guo X L.; Feng QB*. A tunable single-frequency green laser based on a wedged Nd:YVO4 crystal and a KTP crystal. Laser Phys.31(2021)065002.

  14.     Ma Dong; Li Jiakun*; Feng Qibo; He Qixin; Ding Yaowen; Cui Jianying. Simultaneous measurement method and error analysis of six degrees of freedom motion errors of a rotary axis based on polyhedral prism. Appl. Sci. 11(2021)3960.

  15.     Ran Yunfeng; He Qixin*; Feng Qibo; Cui Jianying. High-accuracy on-site measurement of wheel tread geometric parameters by line-structured light vision sensor. IEEE Access 9(2021)52590.

  16.     Gao Zhihong; Zhang Wenxi*; Yan Boxia; Kong Xinxin; Zhao Yashuai; Wu Zhou; Guo Xiaoli; Feng Qibo. A tunable single-longitudinal-mode wedge Nd:YVO4 laser with a YVO4 wave-plate. Appl. Phys. B 126(2020)172.

  17.     Gao Run; He Qixin*; Feng Qibo; Cui Jianying. In-Service Detection and Quantification of Railway Wheel Flat by the Reflective Optical Position. Sensors 17(2020)496.

  18.     Zheng Fajia; Feng Qibo*; Zhang Bin; Li Jiakun; Zhao Yuqiong. A high-precision laser method for directly and quickly measuring 21 geometric motion errors of three linear axes of computer numerical control machine tools. Int J Adv Manuf Technol 109(2020)1285.

  19.     Fajia Zheng; Feng Qibo*; Bin Zhang; Jiakun Li and Yuqiong Zhao. Effect of detector installation error on the measurement accuracy of multi-degree -of -freedom geometric errors of a linear axis. Meas. Sci. Technol. 31(2020)094018.

  20.     Peizhi Jia; Bin Zhang*; Feng Qibo and Fajia Zheng. Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of CNC Machine Tools Using Different Modes. Sensors 20(2020)3439.

  21.     He Qixin; Li Jiakun; Feng Qibo*. Ppb-level formaldehyde detection system based on a 3.6 mu m interband cascade laser and mode-locked cavity enhanced absorption spectroscopy with self-calibration of the locking frequency. Infrared Phys. & Technol. 105(2020)103205.

  22.     Han Qiang; Wang Shengchun; Fang Yue; Wang Le; Du Xinyu; Li Hailang; He QiXin; Feng Qibo*. A Rail Fastener Tightness Detection Approach Using Multi-source Visual Sensor. Sensors. 20(2020)1367.

  23.     Zheng Fajia; Zhang Bin; Gao Run; Feng Qibo*.A High-Precision Method for Dynamically Measuring Train Wheel Diameter Using Three Laser Displacement Transducers. Sensors 19(2019)4148.

  24.     Run Gao, Qixin He and Feng Qibo*.Railway Wheel Flat Detection System Based on a Parallelogram Mechanism. Sensors 19(2019)3614.

  25.     Zheng Fajia; Feng Qibo*; Zhang Bin; Li Jiakun. A method for simultaneously measuring 6DOF geometric motion errors of linear and rotary axes using lasers. Sensors 19(2019)1764.

  26.     Jiakun Li; Feng Qibo*; Chuanchen Bao; Bin Zhang. Method for simultaneously and directly measuring all six-DOF motion errors of a rotary axis. Chin. Opt. Lett. 17(2019)011203.

  27.     He Qixin; Feng Qibo; Li Jiakun. Long-Term Stable Online Acetylene Detection by a CEAS System with Suppression of Cavity Length Drift. Sensors 19(2019)508

  28.     Bao Chuanchen; Feng Qibo* Li Jiakun. Simultaneous Measurement Method and Error Analysis of the Six Degrees-of-Freedom Motion Errors of a Rotary Axis. Appl. Sci. 11(2018)2232.

  29.     Zhihong Gao; Feng Qibo*; Wenxi Zhang; Xinxin Kong; Boxia Yan; Yan Qi; Zhou Wu; Yang Li. Single longitudinal mode operation in diode-end-pumped wedge Nd:YVO4 laser. Opt. Commun. 424(2018)131.

  30.     Chuanchen Bao; Jiakun Li*;Feng Qibo and Bin Zhang. Error-compensation model for simultaneous measurement of five degrees of freedom motion errors of a rotary axis. Meas. Sci. Technol. 29(2018)075004.

  31.     Li Jiakun; Feng Qibo*; Bao Chuanchen; Zhao Yuqiong. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser. Opt. Express 26(2018)2535.

  32.     Guang Chen;Feng Qibo*; Keqin Ding; and Zhan Gao. Subpixel displacement measurement method based on the combination of particle swarm optimization and gradient algorithm. Opt. Eng. 56(2017)104101.

  33.     Yuqiong Zhao; Bin Zhang*; and Feng Qibo. Measurement system and model for simultaneously measuring 6DOF geometric errors. Opt. Express 25(2017)20993.

  34.     Guang Chen*;Feng Qibo;and Keqin Ding. Methods and Systems for High-temperature Strain Measurement of the Main Steam Pipe of a Boiler of a Power Plant While in Service. J. Opt. Soc. Korea 20(2016)770.

  35.     Bin Zhang*; Feng Qibo; and Yunfeng Liang. Interferometer with bismuth silicon oxide crystal for vibration measurement. Opt. Eng. 55(2016)091406.

  36.     Yuqiong Zhao; Feng Qibo*; Bin Zhang; and Cunxing Cui. Influence of beam radii on a common-path compensation method for laser beam drifts in laser collimation systems. Meas. Sci. Technol. 27(2016)084013.

  37.     Xiaojing Gao; Bin Zhang*; Feng Qibo; Xin Xie; and Lianxiang Yang. Nano-vibration measurements using the photoelectromotive force effect in the GaAs crystal. Instrum. Exp. Technol. 59(2016)470.

  38.     Cunxing Cui; Feng Qibo*; Bin Zhang; and Yuqiong Zhao. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser. Opt. Express 24(2016)6735.

  39.     Jing Wang; Feng Qibo *. Residual stress determination of rail tread using a laser ultrasonic technique. Laser Phys. 25(2015)056104.

  40.     Cunxing Cui; Feng Qibo*; and Bin Zhang. Compensation for straightness measurement systematic errors in six degree-of-freedom motion error simultaneous measurement system. App. Opt. 54(2015)3122.

  41.     Jing Wang*; Feng Qibo. Converging ultrasonic shear-vertical waves generated by a double-line laser and its application for surface defect detection. Jap. J. App. Phys. 54(2015)046602.

  42.     Yong Lv*; Feng Qibo; Lishuang Liu; Qingrui Yi; and Yueqiang Li. Application of optical switch in precision measurement system based on multi-collimated beams. Measurement 61(2015)216.

  43.     Shuai Gao; Bin Zhang*; Feng Qibo; Cunxing Cui; Shiqian Chen; and Yuqiong Zhao. Errors crosstalk analysis and compensation in the simultaneous measuring system for five-degree-of-freedom geometric error. App. Opt. 54(2015)458.

  44.     Yusheng Zhai*; Zhifeng Zhang; Yuling Su; Xinjie Wang; and Feng Qibo. A high-precision roll angle measurement method. Optik 126(2015)4837.

  45.     Tong Zhang; Feng Qibo*; Cunxing Cui; and Bin Zhang. Research on error compensation method for dual-beam measurement of roll angle based on rhombic prism. Chin. Opt. Lett.  12(2014)071201.

  46. 47.    Shengjia Wang; Zhan Gao*; Guangyu Li; Ziang Feng; and Feng Qibo. Continual mechanical vibration trajectory tracking based on electro-optical heterodyne interferometry. Opt. Express 22(2014)7799.

  47. 48.    Yan Gao; Feng Qibo*; and Jianying Cui. A simple method for dynamically measuring the diameters of train wheels using a one-dimensional laser displacement transducer. Opt. Lasers Eng. 53(2014)158.

  48.     Feng Qibo *; Bin Zhang; Cunxing Cui; Cuifang Kuang; Yusheng Zhai; and Fengling You. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide. Opt. Express 21(2013)25805.

  49.     Jing Yang; Feng Qibo*. A new method for measuring subgrade settlement in high-speed railway by using a linear CCD. Measurement 46(2013)1751.

  50. 51.    Sijin Wu; Lianqing Zhu; Feng Qibo; and Lianxiang Yang*. Digital shearography with in situ phase shift calibration. Opt. Lasers in Eng. 50(2012)1260.

  51.     Yusheng Zhai; Feng Qibo* and Bin Zhang. A simple roll measurement method based on a rectangular-prism. Opt. Laser Technol. 44(2012)839.

  52. 53.    Zhan Gao*; Yan Deng; Yiting Duan; Zhifeng Zhang; Cheng Wei; Shiqian Chen; Jianying Cui; and Feng Qibo. Continual in-plane displacement measurement with temporal wavelet transform speckle pattern interferometry. Rev. Sci. Instrum. 83(2012)015107.

  53. 54.    Shengwei Ren; Shiping Gu; Guiyang Xu; Zhan Gao; and Feng Qibo*. A new track inspection car based on a laser camera system. Chin. Opt. Lett. 9(2011)031202.

  54.     Fengling You; Bin Zhang*; and Feng Qibo. A novel laser straightness measurement method with beam bend compensation. Optik 122(2011)1530.

  55. 56.    Meng Zheng*; Feng Qibo; Zhan Gao; Shuangyun Shao; Keqin Ding. Experiments and analyses of a new type optical system for computed radiography. Chin. Opt. Lett. 8(2010)800.

  56. 57.    Zhan Gao*; Feng Qibo; Sijin Wu; Fei Cheng; Jianying Cui; Shiqian Chen; Shiqing Jia; and Jianjun Liu. Track irregularity inspection trolley based on fiber-optic gyro. J. Micro-Nanolithography Mems and Moems, 9(2010) 013045.

  57. 58.    Benyong Chen*; Enzheng Zhang; Liping Yan; Chaorong Li; Wuhua Tang; and Feng Qibo. A laser interferometer for measuring straightness and its position based on heterodyne interferometry. Rev. Sci. Instrum. 80(2009)115113.

  58. 59.    Jinyun Ding; Feng Qibo*; Lianqing Zhang; and Shulian Zhang. Laser frequency splitting method for high-resolution determination of relative stress-optic coefficient and internal stresses in Nd:YAG crystals. App. Opt. 47(2008)5631.

  59.     Feng Qibo*; Bin Zhang and Cuifang Kuang. Four degree-of-freedom geometric error measurement system with common-path compensation for laser beam drift. Int. J. Precis. Eng. Manuf. 9(2008)26.

  60. 61.    Zhifeng Zhang*; Feng Qibo; Zhan Gao; Cuifang Kuang; Cheng Fei; Zhang Li; and Jinyun Ding. A new laser displacement sensor based on triangulation for gauge real-time measurement. Opt. Laser Technol. 40(2008)252.

  61.     Cuifang Kuang*; En Hong; Feng Qibo; Bin Zhang; and Zhifeng Zhang. A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement. Meas. Sci. Technol. 18(2007)3795.

  62.     Cuifang Kuang*; En Hong; and Feng Qibo. High-accuracy method for measuring two-dimensional angles of a linear guideway. Opt. Eng. 46(2007)051016.

  63.     Cuifang Kuang*; Feng Qibo; Bin Zhang; Bin Liu; Shiqian Chen; and Zhifeng Zhang. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module. Sens. Actuators. A 125(2005)100.

  64.     Feng Qibo*; Bin Zhang; and Cuifang Kuang. A straightness measurement system using a single-mode fiber-coupled laser module. Opt. Laser Technol. 36(2004)279.

五.专著和译著

1.冯其波主编《光学测量原理、技术与应用》,清华大学出版社,2023.8,ISBN 978-302-63068-5.

2.冯其波,谢芳,张斌,高瞻,邵双运 编著《光学测量技术与应用》,清华大学出版社,2008.5,ISBN 978-7-302-17136-2. 

3.焦明星,冯其波,王鸣,刘君 编著.《激光传感与测量》,科学出版社,普通高等学校“十二五"规划教材,2014.6,北京. ISBN 978-7-03-040664-4. 

4.参编英文专著《Laser Scanning, Theory and Applications》:Chapter 28.P543~566,“A New Laser Scanning System for Computed Radiography”.ISBN:978-953-307-205-0. INTECH,2011.04


六.专利

1.Feng Qibo, Zhang Bin, Cui Cunxing. Laser measurement system and method for measuring 21 GMEs.        US 9,982,997 B2, 2018-5-29.

2.Feng Qibo, Zhang Bin, Gao Zhan, Cui Cunxing. 6DOF error laser simultaneous measurement system with a single polarization maintaining fiber coupling and transmitting the dual-frequency laser. US 9,857,161 B2, 2018-01-02.

3.Feng Qibo, Zhang Bin, Cui Cunxing. Laser measurement system capable of detecting 21 geometric errors.     EP 3,249 350 B1,2019-11-27

4.Feng Qibo, Zhang Bin, Cui; Cunxing. System for simultaneously measuring six-degree-freedom errors by way of dual-frequency lasers being coupled into a single optical fiber. EP 3,190,381 B1,2019-11-06

5.Feng Qibo, Li Jiakun, Zheng Fajia, Yang Jing. Laser measurement system and method for measuring six-degree-freedom geometric error of rotating shaft. US 10,837,766 B2. 20-11-17

6. Feng Qibo, Dong Hui, Zheng Fajia, Shao Shuangyun, Tan Zhizhong, Zhao Xiaohua. Structured light based wheel multiple parameter online measurement system and measurement method thereof. US 10,895,451 B2, 2021-01-10.

7.冯其波,郑发家,杨婧,冉赟丰.轮轨接触状态与车轮踏面故障的激光检测系统与方法,                  ZL 201910912410.6,2020-10-23

8.冯其波,杨婧.便携式车轮直径测量装置与测量方法. ZL 201710291743.2, 2019-05-21.

9.冯其波,杨婧.用于测量转轴六自由度几何误差的激光测量系统及方法.ZL 201611131183.6,2019-03-22.

10.冯其波,杨婧.利用光学方法的声屏障状态测量装置、系统和方法, ZL 201510142850.X,2017-7-14.

11.冯其波,张斌,崔存星.一种可检测21项几何误差的激光测量系统与方法. ZL 201580001345.1,2018-3-9.

12.冯其波,张斌,高瞻,崔存星.单根光纤耦合双频激光六自由度误差同时测量系统. ZL 201480077557.3,2019-8-9.

13.冯其波,高岩,邵双运,崔建英.一种非接触式车轮直径动态测量装置及其测量方法;                   ZL 201410005647.3;2014.01.064.


七.获奖和荣誉

1.轮对几何参数与故障动态检测关键技术及应用,高等学校科学研究优秀成果奖(科学技术)科技技术进步二等奖;中华人民共和国教育部;排名1/12;2023年。

2.面向数控机床的激光多自由度误差同时测量关键技术及应用,中国仪器仪表学会技术发明一等奖;排名1/6;2022年。

3.轮对几何参数测量关键技术与系统;中国计量测试学会科技进步一等奖;排名第1;2020年。

4.重载铁路桥梁和路基检测与强化技术,高等学校科学研究优秀成果奖(科学技术)科技技术进步一等奖;中华人民共和国教育部;排名2/28,2012年。

5.工业射线数字成像管道缺陷检测技术研究与设备研制;国家质量监督检验检疫总局科技兴检奖二等奖;排名第3/9;2010


来源:山涧果子
ACTMechanicalOpticalSystemDeform光学轨道交通MEMS数控管道
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2025-01-21
最近编辑:8小时前
山涧果子
大专 签名征集中
获赞 204粉丝 52文章 1058课程 0
点赞
收藏
作者推荐

俄罗斯CAX数据转换组件:CAD Exchanger

CAD Exchanger 技术可帮助软件开发人员和最终用户在任何平台、任何来源、任何格式的 3D 数据上进行工作、共享和协作。最终用户应用程序 - CAD Exchanger Lab。在桌面上查看、分析和转换 3D 数据。面向软件开发人员的 SDK 和工具 - CAD Exchanger SDK。用于应用程序和 SaaS 解决方案的 C++、C#、Java、Python 库。- 制造工具包。用于开发按需定制制造解决方案的 API,从即时报价到 DFM 分析。我们很荣幸能拥有来自财富 100 强公司的客户,并很荣幸能为当今领导者的项目做出贡献:汽车行业的特斯拉、消费电子产品的苹果、太空探索的 NASA、快递业务的亚马逊等等。- 超过 25 万个实验室最终用户 - 超过 100 万个支持 SDK 的最终用户 - 超过 110 个国家/地区。网站http://cadexchanger.comR. Lygin - 总经理Roman 自 1997 年以来一直是 CAD 行业资深人士。在 Open CASCADE 和英特尔公司工作后,他于 2014 年创立了 CADEX。CADEX 由 Roman Lygin 于 2014 年创立,他是一位资深人士,在 EADS Matra Datavision、Open CASCADE 和 Intel 的 CAD 数据交换、并行计算和项目管理方面拥有 20 多年的经验。然而,其根源可以追溯到五年前,当时 CAD Exchanger 最初只是 Roman 的业余爱好项目,并受到仍然面临 CAD 数据转换挑战的用户的极大关注。Roman Lygin 已在Open CASCADE SA 公司工作7 年。他领导了公司为其客户提供的欧洲内部研发项目和客户项目。Roman 负责 Open CASCADE Technology(该公司的开源 CAD/CAM/CAE 开发平台)的数据交换和形状修复模块。它已被用于汽车、航空航天、造船、能源、医药和其他行业的数百个商业项目以及众多研究项目。2002 年至 2003 年,Roman 担任 Open CASCADE Technology 的平台经理。目前,他是位于下诺夫哥罗德市的俄罗斯办事处的销售经理。如今,CAD Exchanger 解决方案通过软件供应商为数十万最终用户提供支持。CAX软件离不开数据转换器。数据转换器的主要作用就是让你的软件不仅仅可以打开其他软件的3D数据格式,而且也能够输出到其他软件的3D数据格式,现在甚至链工程图也可以。3D数据转换器主要有法国的InterOp(全球200家商业客户),美国HOOPS Exchange(全球200家商业客户),法国的Datakit,俄罗斯CAD Exchanger 等。目前,CAx可利用的中性格式有很多,其中包括标准如IGES、STEP;商业版本SAT、x_t、JT等;开源版本Brep、STL、PLY等。数据交换的常见场景有三:一是在几何间相互转换和数据交换,主要集中在CAD到CAD,CAD到CAM间;第二是在几何图形与几何离散间进行交换,它一般是单向的,即从几何到离散,逆向过程基本不能实现;第三,主要用于可视化所需数据交换。比如:现在很多CAD模型都比较复杂,有时候为了一些特殊用途(轻量化显示、布尔运算、CAE网格剖分等),需要到对原始模型进行减面操作。一款三维CAD转换软件或者内置组件,其提供独特的多格式转换功能,使得模型能够在CAD/CAM/CAE系统之间快速转换。CADEX由 40 多名工程师组成的团队,他们在数学、计算机科学、工程、市场营销、图形设计和许多其他领域拥有强大的背景,能够自信地应对 CAD 中的挑战。来源:山涧果子

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈