首页/文章/ 详情

CFD|NFX湍流模型-2方程K-ω

2小时前浏览11

K-ω Model

    midas NFX 提供标准2方程k–ω模型和k–ω(SST),k–ω 湍流模型,在航天和涡轮机械领域得到最广泛的应用,k-ω模型在高雷诺数湍流流动和旋转流动以及对于有压力梯度的大范围边界层流动等复杂流动情况下更适用。相比之下,k-ε模型主要适用于中等雷诺数流动,且在分离流动和旋转流动等情况下预测准确性下降,SST k–ω 模型使用混合函数从壁面附近的标准k–ω 模型逐渐过渡到边界层的外部的高雷诺数k–ε模型.

   It is the 2-equation turbulence model capable to calculate low Reynolds number by integration with respect to the wall.6 It calculates two convective transport equations for specific dissipation rates of turbulent kinetic energy and turbulent kinetic energy. The transport equation is expressed with respect to k as follows.

 is calculated as the equation (4.3.23) and The Mt function F(Mt ) is calculated as the equation (4.3.24).

:dilatation dissipation

Midas NFX-CFD uses  and  and  is calculated as the equation(4.3.25).  is designed to enhance shear flow predictability and is defined as the equation (4.3.26).

: cross-diffusion parameter
Then it calculates the transport equation with respect to ω as follows.

α and β are calculated as follow

midas NFX-CFD usesand=0.09 for each constant and  is calculated as the equation (4.3.30).is designed to analyze planar and curved jet flows and it is calculated as the equation (4.3.31).

: vortex-stretching parameter

Here  and  are defined as the equations (4.3.2) and (4.3.7). Finally, turbulent viscosity is calculated as follows.

  The k–ω model provides excellent result for near wall zone and adverse pressure gradient problems.

  However, for free stream, if k and ω are not adequately set, the result value can vary sensitively.

k -ω SST (Shear Stress Transport) Model

   It is the model that has both strengths of the k-ω model and the k-ε model. It is designed to apply the weighted function apply the k-ω turbulence model near the wall and the k-ε model from the boundary layer end. While the k-ω SST turbulence model is highly accurate for adverse pressure gradient problems or separation phenomena, it can be relatively less accurate for flow recovery problems such as reattachment.



来源:midas机械事业部
湍流航天UMNFXMIDAS
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-11-03
最近编辑:2小时前
MIDAS官方
幸福、贡献、分享-用技术创造幸福
获赞 126粉丝 343文章 479课程 11
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈