小工程师总结:气瓶在火灾下的破裂,主要就是高于330°温度,树脂开始分解,产生炭和气体产物,约560°C时纤维氧化开始。
一、研究背景
- 国际上为减少温室气体排放,18家世界领先公司表达了加强氢作为清洁能源载体的意愿,氢动力燃料电池电动汽车(FCEVs)在长续航应用中有望超越电池电动汽车(BEVs)。
- 高压存储对FCEVs的续航里程至关重要,汽车应用中采用具有热塑性内衬和纤维增强复合材料的IV型压力容器来存储氢气,但复合材料对火敏感,暴露于外部热负荷时会退化,失去机械强度,可能导致容器破裂,需要采取安全措施来降低风险。
图1 汽车用IV型氢气罐的结构
表1文献中报告的篝火试验。
二、实验内容
1. 实验设置与材料
- 实验装置:基于法规No. 134进行池火实验,测试装置位于配备挡风板的自由场,容器为7.5L的IV型氢罐,水平放置在丙烷燃烧器上方100mm处,燃烧器有10个出口,可调节火焰温度,罐上安装13个K型热电偶,两侧有连接口用于加压和测量设备。
- 材料:罐由高密度聚乙烯(HDPE)内衬和湿缠绕的复合材料层组成,CFRP由东丽T700碳纤维和环氧树脂组成,纤维体积分数为63%,内衬熔点为153.2°C。
图2 测试设施,以进行篝火测试
表2用于篝火试验的IV型氢气罐的尺寸
2. 篝火测试的可重复性
- 进行了三次初始密度为40.2g/L氢气(对应15°C时内部压力为700bar)的测试,以确保火测试的可重复性。
- 结果表明,三次实验的火温度非常接近,平均为778°C,罐底部温度平均为458°C,耐火时间可重复,平均值为12.08min,最大偏差为23s。
- 观察到耐火时间和罐上所有温度传感器的平均值之间存在依赖关系,温度分布相似的实验二和三耐火时间仅相差7s,实验一与其他两次实验的最大温度差达到90°C,导致耐火时间延长至30s。
图3 热电偶的位置。
3. 材料表征
- 对复合材料进行热重分析(TGA)和差示扫描量热法(DSC),以确定其分解过程和HDPE内衬的熔点。
三、结果与讨论
不同温度负载对耐火时间的影响
- TGA分析表明,罐复合材料在330°C以下不开始分解,高于此温度,分解先影响树脂,产生炭和气体产物,约560°C时纤维氧化开始,至1000°C时材料的72.5%转化为气态产物。
图5 通过TGA分析了T700/环氧树脂体系的降解步骤
- 进行了约300°C温度负载的篝火测试,罐内充有21.2g/L氢气(相当于15°C时压力为300bar),两小时内罐未破裂或泄漏,但在温度超过330°C的区域发生了降解。
- 随后将罐加热至低于降解温度后再暴露于额外热负荷至500°C,罐内充有40.2g/L氢气(相当于700bar),罐壁降解导致罐破裂,罐内压力升高,由此得出温度水平对复合材料降解和罐的残余强度起决定性作用。
图4 左:火焰和储罐底部外罐壁的温度曲线。右:外罐壁上所有传感器的平均温度。
2. 火灾冲击面积对耐火时间的影响
- 实验考察了火灾加载表面积大小对耐火时间的影响,氢罐充有40.2g/L氢气,暴露于三种火灾冲击变化(容器圆柱形部分的10%、50%和100%火灾冲击),火焰温度均为800°C。
- 结果表明,火灾冲击面积越大,耐火时间越短,10%火灾冲击时耐火时间为30.2min,50%时为12.1min,100%时为5.5min。
- 小火灾冲击面积使热量传递到容器内的速度较慢,从而减缓内部加热、压力增加和罐壁的机械负荷,因此耐火时间显著增加。
- 此外,最大压力值取决于火灾暴露面积的大小,10%暴露时最大压力为973bar,100%暴露时为921bar,可能是因为局部热负荷时,热量可通过纤维方向的热传导在更大区域分布,从而减缓分解过程和延迟破裂时间,需要进一步研究来证实这一建议。
图6 左:在300∘C温度负荷下,油箱的温度和压力曲线。右图:由于储罐下的温度负荷为300∘C而引起的材料变化。
3. 初始压力对失效时间和模式的影响
- 实验考察了初始氢压力对耐火时间和失效模式的影响,进行了初始压力为175、350和700bar以及火灾冲击面积为100%的三次篝火测试,50%火灾暴露时初始压力值为200、400、600和700bar。
图7 700巴储罐在不同温度负荷下的温度和压力分布。
- 结果表明,在100%火灾暴露下,初始罐压力越低,耐火时间越高,700bar和350bar之间耐火时间增加了42%。
- 初始氢压力为175bar时,8.8min后发生泄漏,罐通过复合罐壁减压,与Ruban等人的测试结果相匹配,尽管他们使用的是36L罐,但导致泄漏的罐特定初始压力均为175bar。
图8 在篝火试验中,不同大小的火灾撞击区域。
- 进一步研究了火灾冲击面积和不同初始氢压力值的综合影响,发现较小的火灾冲击面积即使在不同初始压力值下也会使耐火时间增加,平均而言,耐火时间翻倍。
图9 在不同火灾撞击区域的篝火试验中的压力发展。
- 但初始压力对压力容器的失效模式起决定性作用,任何情况下,压力超过200bar的罐都会破裂,尽管初始压力较低时耐火时间较长。
- 例如,初始压力为200bar的罐在17.8min后通过复合壁泄漏,比初始压力为400bar的罐破裂时间少1.17min,泄漏时内部温度为231°C,压力为358bar,再次超过DSC测定的熔点。
- 较小的氢质量导致罐内热容量较低,从而引起更快的加热过程,这是泄漏在比400bar罐破裂更短时间内发生的原因,但这一理论需要进一步研究支持,特别是关于400bar和700bar之间加热速率没有显著差异的背景下,需要关注比热容的温度和压力依赖性。
图10 局部火灾撞击时的热传导机制。
四、结论
- 火温度升高导致耐火时间减少,低于TGA确定的降解温度时不发生降解过程,超过该阈值时开始热解,罐的残余强度降低直至泄漏或破裂。
表3不同初始氢气压力下的篝火试验
- 火灾冲击面积增加导致耐火时间减少,在局部火灾冲击的情况下,未受损的罐部分似乎可以平衡局部火灾损害。
图11 100%火灾撞击区域(左)和50%暴露区域(右)的火灾区域和水箱上部的温度分布
- 本测试系列中使用的氢罐的特定压力极限为200bar,超过此极限罐在加热过程中会破裂,低于此压力极限内衬熔化,导致泄漏和通过复合壁减压,初始氢压力越低,耐火时间越长。
图12 175、350和700 bar初始氢压力和火灾冲击面积为100%。
- 篝火测试中观察到内衬熔化温度明显高于在大气压下DSC测定的值,推测内衬的熔化温度与压力有关,在单独的研究中将详细检查泄漏条件,此外,局部火灾冲击下的局部损伤需要进一步研究,以解释尽管观察到内部压力较高但耐火时间更长的原因。
图13 具有200、400、600和700巴初始氢气压力和50%火灾冲击区域的罐内的温度和压力分布。