(更多新能源行业资讯,尽在知乎“小明来电”,欢迎交流讨论~)
原文:Battery safety: Machine learning-based prognostics - ScienceDirect
虽然电池故障是罕见的,典型的18650 NCA电池的故障率为4千万个电池中有1-4个,但它可能导致灾难性的后果,如储能应用中的火灾和爆炸。具体而言,与安全问题相关的电池状况可总结于表1。最近,人们对电池故障机制、特征和缓解措施进行了广泛的研究,在此背景下,我们将重点关注故障场景(图1),为电池故障的分析和预测提供见解,以解决现实问题。
最初的局部“软短路”可能由多种原因引起,包括(i)电池隔膜中纳米尺寸的缺陷,(ii)制造过程中发生的金属颗粒污染,或(iii)在使用寿命期间因大量析锂而产生的枝晶(图2)。缺陷尺寸和渗透位置是两个重要因素,不仅影响容量损失和自放电,而且影响安全操作。电池中的“软短路”通常是指一小块面积(几平方毫米或更小),其电阻R (Ω cm2)明显小于电池的平均值。这个电阻低的缺陷区会导致电池内部电流分布不均匀。结果将是通过电池该区域的电流I (A)会高得多,这将导致由于该区域的I2R加热而导致温度异常升高。随着时间的推移,其中一些微小的缺陷会引发该区域的老化,甚至导致隔膜破裂,当正负极直接接触时,导致内部短路。这导致“硬短路”表现出非常高的电流,非常高的局部加热和大的温升,这将触发可能的电池完全失效和热失控。在制造过程中,嵌入电池中的非常小的金属颗粒的存在尤其令人担忧。经过几个月到几年的孵育期,这样的粒子可以导致两个电极之间的直接接触。一旦发生“硬短路”,电池温度将迅速升高(以秒为单位),导致可逃脱且无法控制的热失控,其特征是火灾和爆炸。
前面章节中讨论的大多数电池故障事件都发生在电芯级别。然而,电池灾难性故障的后果也可能在系统层面发生(图3)。在这种情况下,发生在电动汽车和储能站的大事件是热失控。当一个模组或电池组中的单个电芯出现故障时,就会引发连锁反应,可能会扩散到邻近的电芯,导致多个电芯的热失控。这种情况会造成严重的火灾危险,并且可能非常危险。关键问题是如何防止电芯故障向相邻电芯传播。这可以通过在整个模组中分布保险丝来完成,以从模组的当前路径中移除故障电芯。此外,可以在电池和模组之间放置阻燃材料以抑制火灾。最后,热管理系统可以编程,以增加冷却到最大的电池故障的情况下。在最近的一篇综述中可以找到系统级热失控传播的详细描述。显然,上述危险故障和破坏性情况是不允许在电池的日常操作中发生的。除了改进电池化学和电池组设计之外,数据驱动的机器学习技术如何提高电池系统在正常和滥用情况下的安全运行,这一问题的答案具有重要意义。
相关领域知识
通常,人们关注的是由于制造缺陷引起的内部短路或由于误用引起的电流或温度过高而导致的潜在电池故障。虽然行业的进步减少了BMS故障,但准确预测电池故障仍然是难以捉摸的。然而,大多数电池故障都是随着时间的推移而发生的,在实际情况下从几个月到几年不等,这就为在风险升级之前发现风险提供了机会。开放数据、先进模拟技术和软件的出现将机器学习整合到材料科学和电池研究中。机器学习,特别是在多保真度框架内,适用于预测任务。通过创建早期预警系统和及时的滥用检测机制,利用数据驱动建模来提高电池安全性是一个很好的机会。当前的挑战包括有效地管理相关数据集,并确定哪些数据子集对训练机器学习模型至关重要。
无意的制造缺陷和生产条件的细微差异进一步扩大了实验室数据和实际故障之间的差距(图4)。
在过去的十年中,电极材料和电池设计的进步已经寻求优化电化学储能装置。然而,评估方法往往落后于这些创新。评估性能的常用实验室测试包括循环伏安法(CV)、恒流充放电法(GCD)和电化学阻抗谱法(EIS)。这些测试产生关键参数:电容/容量、能量、功率和内阻(图5a)。
如图5b所示,电池安全性的实验室评估利用了加速量热法(ARC)、x射线计算机断层扫描(CT)和能量色散光谱仪(EDS)等技术。
在当前的许多应用中,一个具有挑战性的问题是电池模组和电池组的串并联配置。如前所述,在看似常规的电池运行中,故障可能会在没有明确警告的情况下出现。仅依靠基于电化学的电池级预测方法可能无法充分预测电池组级故障。专业知识与统计方法相结合,可能会更有效地预测电池的安全性能。如图6所示,这些统计特征提供了基于组级电芯行为的偏差和异常值的精确计算。
如前所述,在正常操作和滥用条件下,电池可能会发生灾难性的故障。因此,实际应用中的电池PHM(诊断和健康管理)包括多目标、多尺度的任务,可以从不同的角度进行处理,而不仅仅是与电池寿命相关的工作。这些任务包括在材料水平上识别有缺陷的电池,在电池水平上监测各种滥用条件下的异常电压、热和老化行为,以及在电池组水平上检测不一致和异常值。在本节中,我们将从多模态电池数据(时间序列、热图像、微观图像、实验室数据集、现场数据集、实时数据、历史数据等),并详细阐述了过去几年在电池和材料科学界获得突出地位的各种机器学习模型(图7)。这些技术中的每一种(表2)在确定和预测电池参数和故障/滥用场景方面都具有特殊的优势:(1)机器学习与基于物理的电池模型相结合,更适合于电池级滥用条件下的故障预测;(2)无监督学习、半监督学习和自监督学习,为分析来自电池模块/包的大量无注释数据提供了强大的工具;(3)通过使用迁移学习、生成对抗网络(gan)解决少镜头问题;等,以及在小数据环境中用于提高准确性、更快的训练和增强泛化的物理信息机器学习。
在过去的几十年里,数学方程被科学家广泛用于模拟多物理场和多尺度电池系统。然而,纯粹的数据驱动模型可以很好地拟合观测数据,但很难使其预测性能合理化,并且可能导致在大范围条件下的不良泛化。在本节中,我们讨论了监督学习和强化学习如何通过使用特定领域的特征或自动提取特征来为预测非线性电池系统的演变创造机会,以加强机器学习工具与有限元模型或电化学模型之间的协同集成,重点关注现实条件下的电池行为,如图8所示。
(未完待续~)
小明来电⚡为你充电,我们下期再见,拜拜~