张老师,具有扎实的力学理论基础和17年的结构,传热,流体,多物理场耦合和疲劳软件工程应用经验。
擅长的软件ANSYS经典环境,ANSYS Workbench ,Fluent,nCode和LS-DYNA,;擅长的领域:结构强度与刚度评估,结构振动与冲击,非线性材料计算,复合材料设计,螺栓连接结构分析,过盈配合结构分析,橡胶产品有限元计算,结构的疲劳,损伤和断裂计算;界面增韧机理研究;智能材料断裂计算;优化,多场耦合分析(流-固;热-固;流-热-固);流体的动力学计算和爆炸冲击计算。
以第一作者身份,出版有限元著作6部,目前累计培训学员超过5000+,有丰富的有限元工程应用经验.
工学博士,仿真秀平台优秀讲师。力学和有限元理论基础扎实,参与完成仿真咨询项目多项,参与编写研究生教材《工程结构优化设计方法与应用》一部及《ANSYS Workbench结构分析理论详解与高级应用》(2020年)、《ANSYS结构有限元高级分析方法与范例应用(第三版)》等ANSYS应用教程多本。累计为国内各行业技术人员开展ANSYS培训或技术讲座逾3000人次,授课特点深入浅出、理论联系实际,广受学员好评。
从专业技术看,工业软件开发其实也不是特别难。关键是思维方式要融合,还要融合得天衣无缝。 我经常讲一个段子:老婆让程序员出去买五个包子;如果遇到卖西瓜的,就顺便买一个过来。结果,程序员买了一个包子回家。他的理由是:看到卖西瓜的了。如果这是个段子的话,下面的故事是真实的:我的一位软件专业硕士毕业的同学让一位程序员在“386”上加上“111”。结果,程序员给他的数是“386111”。 程序员的思维方式与“正常”的思维确实不太一样。正如司机选择路线的逻辑,和步行者不一样。前些日子,我参与一个讨论:如何把大的软件,拆成小的APP。我说:没有必要把大的拆小,只要把其他功能封闭就可以了。在物理世界里,“拆”是更经济的,但在软件的世界里,“封”往往更经济。最近大数据技术之所以称为热点,是因为计算机的发展,让一些“笨办法”变得更有效了。 我曾经要同事写段程序。写完后,他让我检查。看完后,我要求他重写这段代码。他问我:什么地方错了? 我回答说:我看不出哪里错了,但我无法证明你是对的。 这个故事则反应了工业软件的特点:对可靠性要求特别高。这种特殊性,让工业软件的思维方式,与普通软件开发又有所不同。 有位同事,写了3000行程序。调式结束后,我让她把三个全局变量改成两个。这样,整个程序都要重写。我对她讲:这样做的目的,是让检查的人方便。因为做检查的时间,比写程序的时间要长。可谓“一天编码、十天检查”。所以,检查的效率高了,整个研发的效率也就高了。有时候,工业软件往往是“一行代码描述功能,十行代码防错”。因为工业软件往��不允许在使用过程中出现严重的BUG。 为了提高可靠的程度,写软件时要考虑到各种意外的场景与异常。正常的场景只有一个,而意外的场景可能有很多。可谓“一种正常场景,十种异常场景”。而现实中,最难防备的就是“预料之外”的问题。这就要求对工业场景特别熟悉 工业人的思维方式,与学术界差别很大:你以为某个技术可以提高产量,但现实中可能不能用:因为它可能影响质量。你以为某个改进可以提高质量,现实中可能也无法用:因为它可能影响安全、稳定。不理解这些“约束”,就写不出合用的软件。 要解决这些问题,本质上都是要解决知识融合的问题。对于不善于交流、不喜欢讨论的中国人来说,知识融合是个很大的挑战。有时候,与其让别人说明白,还不如自己成为这个领域的专家。其实,我的建议是:至少你要成为半个领域专家,才能去开发工业软件。---------------------------------------------------------------------------------------------版权声明:原创文章,作者郭朝晖,来源蝈蝈创新随笔,本文已经授权,欢迎分享,如需转载请联系作者。
【免责声明】本文来自网络收集,来源长安汽车庞剑博士NVH讲座,仅用于交流学习对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!
来源:航空工业微信公众号(ID:avic-2008),内容来自航空工业影像中心。责编:高新宇。提到风洞,可能大家比较陌生。这可不是黑洞、虫洞一类的东西而是一个开展空气动力科学研究的实验室!简单地说,风洞是以人工的方式产生并且控制气流,用来模拟飞行器或实体周围气体的流动情况,并可量度气流对实体的作用效果以及观察物理现象的一种管道状试验设备,它是进行空气动力试验最常用、最有效的工具之一。风洞设备的建设发展与航空航天飞行器研制紧密相连。在航空飞行器发展早期,对空气动力问题的探究促使了风洞的诞生。1901年,莱特兄弟为试验和改进机翼,建造了风洞并在风洞中研究、比较了200种以上的机翼形状。1903年,莱特兄弟成功地让人类建造的飞机飞上了天空,开辟了航空史的新纪元,这次成功的试飞得益于他们的风洞。那么,风洞又是如何工作的呢?在风洞内部气流通过风扇/压缩机增压后,经过低速扩散段、换热器、第三拐角和第四拐角到达稳定段,在蜂窝器和阻尼网的整流作用下,气流更加均匀稳定,再经过收缩段或喷管的加速进入风洞的核心区试验段,形成模型试验所需的流场,之后继续向下游流动,经过扩散段、第一拐角和第二拐角后,再次回到风扇/压缩机,循环往复。而风洞试验简单来说,是根据运动的相对性原理,以飞机为例,将缩比飞机模型固定在风洞内,风洞制造气流流过,模拟真实飞行时飞机周围的空气流动情况,以研究飞机与空气流动的相互作用,了解飞机的空气动力学特性。风洞种类多样,外观形式和用途也各有不同。按照气流速度范围分为:低速风洞(马赫数Ma<0.4),主要用于开展飞机的起飞、着陆、低速飞行,以及建筑物、车辆、桥梁等空气动力试验研究。高速风洞(0.4≤Ma<5),主要用于各种飞行器空气动力试验研究。高超声速风洞(马赫数Ma≥5),主要用于开展各种航天飞行器空气动力试验研究。按照风洞用途可分为:汽车风洞;环境风洞;建筑风洞;桥梁风洞等。风洞在航空航天工程的研究和发展中起着重要作用,20世纪50年代美国研制B-52轰炸机时,曾进行了约1万小时的风洞吹风试验。20世纪80年代,第一架航天飞机的研制则进行了约10万小时的风洞试验。所以,风洞试验的技术水平体现了一个国家航空航天飞行器发展的总体技术水平。随着空气动力学的发展,风洞在交通运输、房屋建筑、风能利用、体育项目等领域,更是不可或缺。例如,建成于1940年的美国西北部一座跨海吊桥,建成后不久,由于一场风速仅为19米/秒的大风,引起了振幅接近数米的“颤振”,桥梁很快塌毁。事后的风洞试验研究发现,这座桥在设计上存在缺陷,这是以往桥梁设计者所没有预见到的。自此之后,凡是设计跨度较大的吊桥,都必须进行风洞模型试验。再比如,跳台滑雪运动员利用风洞模拟滑行,通过控制身体、调整姿势,可以实时观察风速、升力、阻力等相关数据,探索并掌握最优飞行姿势,为以后的科学训练奠定良好基础。由此可见,风洞离我们的生活并不遥远,而是扮演着极为重要的角色。
注:来源于网络
SYNOPSYS™光学设计软件,是目前世界上功能强大的光学设计软件之一。58 年的发展更新和 Windows 界面使得新手很容易上手使用;能轻松面对更高的专业需求。其开发者 OSD 公 司是世界领先的光学设计软件的开发者之一, 同时提供光学设计服务,OSD 公司几乎在所有类 型的光学系统设计方面有着丰富的经验,包括测试仪器、天文、照明、微光夜视、红外系统、目 镜等方面,设计完成了超过了 28000 个的项目。
CrownCAD(皇冠CAD)是国内首款、完全自主的基于云架构的三维CAD平台。 用户在任意地点和终端打开浏览器(www.crowncad.com)即可进行产品设计和协同分享。
Altair是一家领先的企业级工程软件供应商,它支持从概念设计到服务运营的整个产品生命周期的创新、缩短开发时间和降低成本。Altair集成的软件套件,可以通过多个学科优化设计性能,包括结构、运动、流体、热管理、电磁学、系统建模和嵌入式系统,同时还提供数据分析和真实的可视化渲染。
ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo, NASTRAN、Algor、I-DEAS、AutoCAD等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。