液冷板的拓扑优化
(单目标优化、双目标优化、三目标优化)
作者:极度喜欢上课
本文摘要:(由ai生成)
本文基于 COMSOL Mutiphysics 软件,对液冷板进行了单目标、双目标和三目标的拓扑优化。通过控制计算域内流道生成的体积分数上限,利用内置的非局部耦合算子“平均值”,以均温最小为目标函数对液冷板进行拓扑优化。结果表明,经过迭代,流道逐步成型,最终形成稳定贯通的流道,且平均温度、出入口压降和温度方差均有所降低。
液冷板在电池散热或芯片散热中被广泛应用,但仍存在散热结构温度分布不均匀,入口所需驱动压力大等问题。基于COMSOL Mutiphysics,本文以液冷板为例分别进行单目标、双目标、三目标的拓扑优化,以期寻找一种较优的液冷板流道形状的设计。
如图1所示,在二维几何维度下对液冷板的初始几何进行建模。流道内通水,固体部分为钢,如表1所示为所用到材料的物性参数。为了增强模型的收敛性以及节约计算成本,在进行拓扑优化的时候利用“对称”边界条件对模型进行简化。
控制计算域内流道生成的体积分数上限为50%,利用COMSOL内置的非局部耦合算子“平均值”,测量设计域内的平均温度,本节以均温最小为目标函数对液冷板进行拓扑优化。
如图2所示,展示了在不同迭代次数下流道的形成过程。其中蓝色部分代表流道,红色部分代表固体域。随着迭代次数的增加,设计域内的流道逐步成型,最终形成稳定贯通的流道。
如图3所示,展示了在不同迭代次数下的速度云图。随着流道的生成,设计域内的流体逐步形成规律性的流动。
如图4所示,展示了在不同迭代次数下的温度云图。入口温度低,出口温度高,温度随着流体的流动呈现规律性的分布。
本节模型最终优化的结果是,平均温度为312.020K,出入口压降为1.988Pa,温度方差为8.840K。
本节模型最终优化的结果是,平均温度为312.240K,出入口压降为1.987Pa,温度方差为10.027K。
本节模型最终优化的结果是,平均温度为317.975K,出入口压降为1.991Pa,温度方差为5.974K。