首页/文章/ 详情

7个维度解析电源损耗:同步Buck,为何Vin越小,电源效率越高?

5月前浏览5889

摘要

本文探讨了同步Buck电源中输入电压Vin对电源效率的影响,指出在Vin较小时效率更高。通过分析Buck电源效率损耗的八个主要方面,发现Vin减小能降低MOS管的开关损耗、驱动损耗、电感导通损耗和磁芯损耗,尽管导通损耗略有增加,但总体损耗减少,从而提高电源效率。最终得出结论:在输出电压、电感、开关频率不变时,Vin越小,电源整体效率越高。



正文


   

1、一道问题




照例,先抛出一道问题:同步Buck电源,为什么Vin越小,电源效率越高?相比之前,我们给Buck电源再增加一个限定“同步”。


上图中不同输入电压Vin的电流效率曲线,相信各位同学在电源芯片的Datasheet上都看到过。不晓得你有没有仔细考虑过其中的原因。


   

2、表达感谢



感谢各位同学的积极参与,而且不乏质量的留言。经过观点的碰撞想法的探讨,相信认真思考的同学必定会有所收获。



在微 信群里讨论的也是非常热闹,都快凌晨了,大家讨论的热情依旧高涨,你来我往,问题的原因也逐渐清晰。



认真研究各位同学的发言,我对这个问题有了一些新的理解,同时也纠正了自己一些不恰当的理解。


   

3、电源的效率损耗




Buck电源效率都损耗在哪里呢?

①MOS管的导通损耗;

②MOS管的开关损耗;

③MOS管的驱动损耗;

④功率电感的导通损耗;

⑤功率电感的磁芯损耗;

⑥MOS管体二极管的导通损耗;

⑦MOS管体二极管的开关损耗;

⑧PCB走线损耗(本文暂不做分析);


这8项包含了Buck电源的主要损耗。具体每一项,怎么理解,这里不做具体展开。不清楚的同学,请自行研究,网上资源很多。这里我们重点讨论下,Vin减小,会带来哪些变化?


   

4、核心反应堆




在之前发的文章纯干货!DC-DC的电感计算公式推导过程!》中提到Buck电源中电感的计算公式,如下图所示。


当Vout不变,L不变,fsw不变,而Vin减小时,占空比D会增大,相应地,电感纹波电流ΔI会减小,这意味着,电感峰值电流Ipeak也减小。


请记住这三个关键值的变化趋势,它们相当于是核心反应堆,它们的变化会引发一系列变化。


   

5、MOS管的导通损耗如何变化?




Vin减小,占空比D增大,高边MOS管导通的时间加长。而同步Buck集成的MOS管通常是上管Rdson大于下管Rdson,如下图MPS的MPQ4423为例,上管的Rdson=150mΩ,下管Rdson=105mΩ。




当D增大,上管Rdson工作导通的时间就加长,相应地,MOS管的导通损耗就增加。


   

6、MOS管的开关损耗如何变化?




虽然fsw没有变化,单位时间内MOS管开关次数没有发生变化。但Vin减小会导致MOS管的Vds压差减小,如下图所示,使得Vds整体向下移动,这样,开关期间Vds和Id的交叉阴影区域相比之前Vin的阴影区域积分面积减小,则MOS管的开关损耗减小。




MOS管的关断损耗和上述公式类似,只不过把时间更换为关断时的交叉阴影时间。Vds压差减小,同样会使MOS管的关断损耗减小,进而使得整体效率提升。


   

7、MOS管的驱动损耗如何变化?


看过之前文章《电源EMC专辑:2400字解读“Buck电路的EMI高风险区”》或者《自举电容-充电回路的补充说明及风险问题解析》的同学,对下图一定不陌生。Buck电源内部集成有从Vin转化为Vcc的LDO,还有MOS管驱动电路。当Vin降低时,在LDO上的压降(Vin-Vcc)会减小,LDO上的热损耗就会减小。这样,MOS管的驱动损耗就会减小。


   

8、电感的导通损耗如何变化?


Vin减小,ΔI会减小,意味着电感的导通损耗,也就是电感的铁损减小,有利于整体效率的提升。


PS:咱们默认考虑的是CCM模式。这里电感上的电流是连续的,没有因为占空比而断续,也不用像MOS段导通损耗一样乘上占空比D。



   

9、电感的磁芯损耗如何变化?




磁芯损耗与磁通密度Bmax成正比,而Bmax和电感的ΔI成正比。Vin减小,ΔI会减小,使得功率电感的磁通密度Bmax减小,进而导致电感的磁芯损耗减小,有利于整体效率的提升。



   

10、低边MOS的体二极管导通损耗如何变化?


   

   


低边MOS的体二极管导通损耗和体二极管的正向压降Vf、死区时间和续流电流有关。Vf由体二极管的物理特性决定,不会受Vin影响;死区时间是电源芯片内部设置,受Vin影响较小;反向续流,虽然前面说Ipeak峰值有减小,谷值有增大,假设两端死区时间相同,电流带来的变化应该总体持平。所以,我认为:在Vin减小时,低边MOS管的体二极管导通损耗基本不变。纯属个人观点,如有不对,还请斧正。


   

11、低边MOS的体二极管开关损耗如何变化?


   

   


看过之前文章《选择二极管时应重点关注哪些参数?》的同学,对下图应该不陌生。为了这本书还专门组织过“知识竞技”送书活动。二极管都有反向恢复特性。当反向电压(这里指的是上管导通后的Vin)加在体二极管两端时,原来正向导通时积累的电荷需要先释放掉,释放的过程会产生反向尖峰电流Irr,释放的时间大概是trr,这里就存在V和I的交叉部分,会存在损耗。Vin减小,二极管对应的V和I交叉的积分面积减小,Prr也减小。




   

12、总 结


   

   


开头提到的8种损耗,已经分析了7种,我们来一起梳理下:


当Vout不变,L不变,fsw不变,而Vin减小时,D会增大,ΔI会减小,Ipeak也减小,因此而带来的一系列变化:

①MOS管的导通损耗增大;

②MOS管的开关损耗减小;

③MOS管的驱动损耗减小;

④功率电感的导通损耗(铁损)减小;

⑤功率电感的磁芯损耗(磁损)减小;

⑥MOS管体二极管的导通损耗基板不变;

⑦MOS管体二极管的开关损耗减小;


基于上述一系列分析,综合来看,Vin减小,整体损耗是减小的,系统效率提升。所以,在Vout/L/fsw不变条件下,Vin越小,电源效率越高。




来源:硬件微讲堂
碰撞电源电路芯片
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-06-01
最近编辑:5月前
硬件微讲堂
硕士 签名征集中
获赞 21粉丝 35文章 107课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈