摘要
本文介绍了皮尔逊III型曲线在水文频率分析中的应用,特别适用于描述正偏和长尾特性的水文数据。通过数学定义和参数估计方法,详细说明了皮尔逊III型分布的性质和拟合方法。文章利用Python库Pandas、Scipy和Numpy实现了皮尔逊III型分布的拟合和概率密度函数的绘制,并通过新发展的代码直接计算模比系数Kp,取代了传统的查表法,提高了计算效率和准确性。
正文
皮尔逊III型曲线 (Pearson Type III distribution) 是一种广泛应用于水文频率分析的概率分布,特别是极端事件的分析,如洪水频率分析,它是Pearson分布系列中的一种,特别适合于描述具有正偏和长尾特性的水文数据,如洪峰流量和降水量。通过对历史洪水数据的分析,可以使用皮尔逊III型分布来拟合数据并预测未来的洪水发生概率。皮尔逊III型曲线是通过变换正态分布得到的,是一种参数化的分布,通过调整参数可以拟合各种不同形状的分布曲线。
本文采用新一代的算法,直接拟合皮尔逊函数III型曲线,并且自动计算模比系数Kp。
是形状参数(shape parameter)
是尺度参数(scale parameter)
是位置参数(location parameter)
是伽马函数
皮尔逊III型分布的参数通常通过方法矩 (Method of Moments) 或极大似然估计法(Maximum Likelihood Estimation, MLE) 进行估计。具体步骤如下:
(1) 计算样本均值 和标准差 。
(2) 计算样本偏度 。
(3) 根据样本统计量估计分布参数。
使用了Python库Pandas, Scipy和Numpy实现皮尔逊III型分布拟合和概率密度函数绘制,Pandas的作用是读入洪水流量数据,Numpy的作用是计算平均值和标准方差,Scipy的作用是参数估计、定义皮尔逊III型分布和绘制概率密度函数(pearson3.py),拟合后的曲线如下图所示。
在实践中沿用的查表法估算Kp,即结合多年一遇的概率T与偏态系数Cs来确定Kp,如下面所示的4个表格。
这些表格假定Cs是标准方差的倍数,这是一种简化关系,Cs的理论值采用下式计算: