研究方法
在该研究中,通过在一组恒定的工艺参数下系统地改变粉末尺寸,探索粉末粒径分布对使用激光定向能沉积工艺打印316L不锈钢微观结构演变的影响(图1),从而提出了一种根据激光定向能沉积控制特定部位微观结构的方法。利用激光定向能沉积工艺对细粉、混合粉末、粗粉原料进行打印(图2)。此外,还利用不同的粒径分布对粉末床热物理性能和熔池凝固行为的影响,实现束状粉末床熔合工艺中微观结构演变的双向控制。
图1 (a)晶粒宽度和纵横比随工艺参数的变化;(b)相关尺寸和命名的示意图;(c)稀释度和尺寸随激光功率的变化;(d)稀释度和尺寸随激光扫描速度的变化;(e)稀释度和尺寸随粉末流速的变化
图2 (a)细粉;(b) 混合粉末;(c)粗粉的显微结构观察;(d)细粉、混合粉末和粗粉样品的颗粒宽度和长径比量化测量
研究发现在最佳工艺参数下的细粉原料可打印出完全致密的样品,并表现出明显的力学各向异性。通过粉末粒度驱动的熔池工艺方法,从细粉到粗粉样品都实现了细等轴和粗柱状微观结构。使用细粉的电子束粉末床熔合样品横向界面的熔池轮廓宽且浅,具有近单晶粗晶组织微观结构。与此形成对比的是,使用粗粉末在横向具有半圆形熔池轮廓的样品中获得了由细晶粒尺寸组成的弥散的微观结构(图3)。
图3 (a)细粉样品;(b)粗粉样品;(c)对细粉和粗粉样品的粒度和形状进行定量分析;(d)粗粉与细粉对熔池形状及其微观结构影响;(e)具有明显柱状和等轴区域的凝固
研究结论
(1)试验结果证明了粉末粒径分布对增材制造微观结构的影响,探索了此方法对特定部位的微观结构的控制,实现对晶粒形态和尺寸的控制。 (2)本研究实现的细等轴微观结构为传统合金(如SS316L)在3D打印中实现高强度、高延展性、机械各向同性、均匀性和超塑性等提供了可能性。 (3)本研究从细粉末中获得的近单晶组织为打印具有理想高温蠕变性能的镍基高温合金单晶提供了指导。