首页/文章/ 详情

在纤维缠绕过程中纤维张力对复合压力容器机械性能的影响

7月前浏览14277

摘要         在复合压力容器的制造过程中,纤维缠绕过程中的纤维张力对结构的机械性能以及重量效率有重要影响,因此本文对此进行了研究。制造并测试了三组样本:A)钢衬作为参考,B)纤维张力为 3 N的低纤维张力复合容器,C)纤维张力为 80 N的高纤维张力容器。本文讨论了制造过程,特别关注纤维张力这一参数及其相关挑战。进行了带有应变测量和声发射(AE)的爆破试验,并对结果进行了统计分析。还对容器的结构行为及其对重量效率的影响进行了额外的数值研究,以支持实验结果。研究表明,纤维张力的增加在钢衬上引起压缩应力,导致爆破压力增加并对声发射产生影响。此外,由于纤维张力增加,复合层压板的纤维体积分数(FVF)增加,从而导致更高的机械性能和重量效率的提高。


1. 引言        


       自 20 世纪下半叶以来,航空、能源和民用建筑行业感受到了对更坚硬、更强韧和更轻质材料的需求。这些高要求,以及日益增加的复杂性和对更高效技术与结构的需求,导致了复合材料的使用增加[1,2]。人造复合材料具有高的比强度和设计可变性,以及各种材料组合的可能性,使其非常适合满足飞机、汽车、船只或电动机结构的不同要求。在 20 世纪 80 年代,希尔和于尔根斯[2,3]研究了复合材料对战斗机结构的影响。他们的结果表明,这些材料的使用在设计工程中引入了显著的流动性,迫使设计分析人员为每一个不同的应用提出特定的材料。确定复合材料性能的材料科学研究基于四种不同的方法:系统的、协同的、信息的和整体的[4,5]。在本文中,仅涉及系统方法。系统方法是一套方法和工具,能够探索对象、现象或过程的性质、结构和功能。它代表了一个由系统中各组件相互之间以及与环境的相互作用所定义的多元素关系的系统。这种方法的主要特征是使用一个综合模型,由此一个系统的性能不仅由其各个元素的特征决定,而且由整个系统的结构决定[4-8]。相互连接的结构元素只有当这些元素之间的关系产生一种新的特殊性质时才会创建一个系统。在合并过程中,一些性质可能会被抑制,而另一些性质可能会得到加强[5]。总的来说,复合材料可以被描述为[5]:

                     图1 研究中使用的示例:a)b系列纤维张力3N和b)c系列纤维张力80 N


•  为特定目的和功能而设计,它们在实现这一目标的过程中发展;

• 由关于对象状态和外部环境的信息所控制;
• 由相互连接的执行各自功能的组件构成;• 系统对象的属性并非其组件属性的总和;• 如果所有组件共同工作,它们会提供一种新的属性。


       在纤维缠绕过程中有两种不同的纤维处理方法。在第一种方法中,干纤维被沉积,随后用树脂浸渍,而在第二种方法中,纤维在湿缠绕过程中被树脂浸渍以形成复合结构。在接下来的部分,将以第二种方法作为参考。纤维缠绕过程的基础是用浸渍纤维缠绕的芯模。结构的机械强度不仅取决于复合材料的组成,还取决于诸如缠绕角度、纤维张力、树脂类型和固化周期等工艺参数。缠绕过程还可以扩展到包括位置信息[9-12]。光纤的使用使得在该过程中能够实现温度和变形传感器,这允许在纤维缠绕过程中对制造参数进行额外的控制[9,12,13]。

      在缠绕过程结束时,根据所使用的树脂类型,结构在室温下或在具有受控热分布的烘箱中进行固化[10,12]。纤维缠绕主要用于具有圆形或椭圆形横截面的空心元件。其中最常见的应用之一是压力容器。不同可能材料组合的优势允许为各种介质如压缩天然气(CNG)或最近的压缩氢气(CGH2)设计专门的高压复合容器,压力水平可达 700 巴[29,30]。树脂固化温度、缠绕速度、层数和缠绕宽度是在纤维缠绕过程中描述此类高压复合容器的最常见参数。然而,其他参数如丝束宽度、缠绕时的温度或纤维排列[12]也会影响制造的复合容器。

       在本文中讨论高压复合容器问题时,还值得铭记一个重要的额外方面,即聚合物-钢(或更广泛地说,聚合物-金属)和全复合材料管道被更广泛地用于输送碳氢化合物,包括氢气。例如,今天聚合物-钢管道被用于建造 III 型高压管束拖车[14-16]。另一方面,混合聚合物-有色金属管道正在进行测试,以在所谓的绞合天然气和石油管道内安全地输送氢气[17,18]。用于高压管束拖车[19,20]和干线氢气管道(包括柔性和刚性)的全复合材料管道(IV 型和 V 型)也在大力开发中[21-25]。以下列出了在复合容器制造过程中提到的问题和如何解决这些问题的建议。监测系统:• 在专门设计的独特平板压力容器上控制残余应力,该容器用钢带缠绕并开发了一个模型[26],• 纤维控制系统的体积模拟在生产机制中发生的过程,包括复合气瓶[27],• 基于安装在复合材料内部和外部的传感器温度读数的控制系统 - 允许限制残余应力的出现[28],以及• 使用容器表面的光纤布拉格光栅(FBG)监测缺陷对复合参数的影响[29]。工艺改进:• 确定纤维排列角度的最佳取向以获得复合容器尽可能高的即时强度[30],• 研究缠绕过程中应力松弛的影响[31],以及• 应用二氧化硅(SiO2)涂层作为中间层和二氧化硅-二氧化钛(SiO2/TiO2)混合涂层作为顶层作为密封涂层[32]。模型:• 将非线性特征问题简化为 4 个相关的依赖变量(子模型):纤维运动、热学、动力学-流变学和应力-应变[33-35],• 确定工艺参数及其对生产过程中产生的残余应力的影响[36],以及• 展示可以控制残余应力分布的方法[37]。

结果分析:• 使用近红外光谱法对复合材料中基体的质量进行无损测量[38],• 分析张力对复合材料容器残余应力的影响(模型和实验)[39],以及• 对多层长丝缠绕复合管各层之间和外表面变形的测量与分析[40]。应用:• 紧凑型氢气车载储存[41,42],• 飞机[43,44],以及• 减少碳排放(智能能源解决方案、供暖)[45-47]。2. 问题陈述        在[42]中研究了纤维张力对周向缠绕环中残余应力产生的影响。已经表明,由此产生的残余应力可以提高复合环结构的即时强度。本出版物的目的是对高科技制造过程中纤维张力对复合材料最终强度的影响进行定性和定量评估。为此,至关重要的是研究张力如何影响复合材料中的残余应力。所获得的知识将用于实现应用目标,即提出在缠绕过程中选择优化张力的算法,以便所获得的结构具有改进的强度特性。这也将有助于建立一套精确的技术指导方针,并改进缠绕复合材料容器生产的质量控制。

                       表1对实验中使用的样品系列的描述。FVF由纤维和基质的质量分数计算

      在这项研究中,分析了三个钢衬里和六个复合材料容器。如图 1 所示,其中三个复合材料容器是在 3 N的低纤维张力下制造的,另外三个是在 80 N的高纤维张力下制造的。由于获得了大量的实验数据,在本出版物中仅呈现了具有代表性的结果。为了实现这项工作的目标,有必要使用以下研究技术:
• 声发射,它能够检测一种损伤机制,如纤维开裂、纤维摩擦、基体开裂、层间分层等等[48],• 用创新的结果统计分析进行应变测量,由于传感器下材料的非均质性,对复合材料的应变测量具有挑战性[49,50],• 根据各组分质量计算纤维体积分数的方法,这是更可靠的方法之一[51,52],以及• 微观建模以获得复合材料均匀材料特性,这是后续有限元分析计算所必需的,所呈现的均匀化是稳健的、多尺度的方法,考虑镶嵌图案在[52,53]中有所呈现。

图 3. a) 容器上的缠绕图案,b) 干纤维沉积试验,c) 纤维张力为 3 N 时的湿法缠绕过程

图4 在80 N时,缠绕眼处的纤维磨损



图2. a)带有钢衬垫尺寸的CAD模型和b)衬垫照片


        图5 在制造过程中具有3N和80 N纤维张力的复合压力容器的表面

    图6 在测试衬垫(a)和复合容器(b).上的粘合应变计的模式

3. 被测试物体的准备和实验装置

以下部分提供了对复合材料容器样本准备工作的描述。

图7 压力试验的实验设置

3.1. 选择衬里材料的背景      

      在本出版物作者之前进行的研究中,聚合物和钢衬里都被用于测试复合材料容器。基于经验,由于几个原因[54-56]决定选择钢材料作为衬里:• 钢衬里的强度——在缠绕过程中,聚合物衬里的拉伸力很难得到补偿。此外,钢在缠绕期间能防止衬里发生屈曲。• 对性能的了解——钢的线性和塑性行为是广为人知的,(而聚合物对机械因素的反应则更难预测)。• 减少变量——在使用钢衬里时,与实验不相关的变量,如温度、湿度、金属凸台和聚合物之间的问题以及缠绕过程中复合材料的松弛等,无需考虑。• 衬里的圆顶强度——由于缠绕角度为±54°,不可能用复合材料覆盖圆顶。在聚合物衬里的情况下,即使在低压值下,未被覆盖的圆顶也会被破坏。

                图 8. ANSYS Material Designer 中的均质化 RVE 单元

     表2  在均质化过程中使用的线性弹性材料性能(环氧树脂、碳纤维)


表 3 均质复合材料的正交各向异性材料特性。方向 1 是纤维方向,方向 2 和 3 与纤维垂直。FVF——纤维体积分数,E——杨氏模量,G——剪切模量,ν——泊松比,S11T——复合材料在纤维方向上的拉伸强度


图9  内衬钢材料的塑料应力与真实应力的关系

3.2. 测试对象

      在本研究中,对三个系列的复合材料容器进行了研究:A 系列不包含复合材料层,B 系列和 C 系列包含分别用低(3 牛)和高(80 牛)纤维张力制造的复合材料层。每个样本都有相同型号的衬里。表 1 中给出了所分析系列的详细描述。实验中使用的衬里是通过将凸台、圆顶、管道和配件焊接在一起形成的。所有部件均由 St3 钢制成,其几何形状被选择以获得最大受力状态的圆柱形表面。焊接过程由于圆柱体和圆顶之间的厚度差异而具有挑战性;然而,经过几次尝试,有可能选择合适的参数来成功完成这一过程。钢衬里的最终模型如图 2a)和图 2b)所示。

3.3. 纤维缠绕工艺

    压力容器复合材料外壳的纤维缠绕是使用来自博伦茨与舍费尔的五轴缠绕机和来自 EHA 复合机械的气动线轴单元完成的。对于两种不同的设置制造,使用了技术上尽可能低的纤维张力(3 牛)和选定的较高纤维张力(80 牛)。沉积了七层在±54°方向覆盖表面的复合材料。B 系列和 C 系列的固化过程完全相同,在 30°C 的加热室中旋转以避免制造大厅中温度波动的影响。在图 3 中,展示了带有所用缠绕模式的钢衬里(a)以及干纤维沉积试验的结果(b),此外还展示了湿纤维缠绕过程(c)。在高纤维张力(80 牛)的过程中记录了几个挑战。第一个挑战是沿着容器圆顶改变缠绕方向时纤维放置的敏感性。因此必须遵循精确的沉积路径以避免纤维在任一方向上的滑动。第二个挑战是在穿线孔处的纤维磨损(见图 4)。这导致了两个问题,首先在纤维进给过程中纤维被移除或随机排列到达结构上,导致出现如图 5 所示的表面,其次纤维可能被损坏,导致机械性能下降。然而,确切的损坏取决于各个制造设置的参数,例如偏转点的数量。3.4. 应变测量

     在研究中,将 TENMEX 应变片(测量基长 3 毫米,常数 k = 2.19,初始电阻 120 欧姆)粘贴到测试对象上。传感器根据图 6 所示的图表进行布置和定向。应变片的电气连接和表面用特殊制剂进行固定,以防止机械损坏以及与水或油接触。以这种方式制备的衬里和复合材料容器在静态爆破试验中进行了研究。

3.5. 实验设置和测试程序的描述

      在本研究中,使用了一个专门设计和构建的实验设置来进行力学实验。测试衬里和复合材料容器被注水、排气,然后连接到压力装置(图 7)。压力从零增加到破坏点。这部分实验的目的是模拟由气体(如氢气)引起的内部压力。由于水的不可压缩性质,所以用水作为压力介质。水被倒入容器中以在测试对象的内表面上施加负荷,这由压力控制器控制。连接到 HBM MGC Plus 的应变片记录了衬里或复合材料容器外表面的应变。六个声学传感器以自由环的形式布置,以记录压力测试期间的事件。由于衬里或复合材料的连续性被打破,水出现在外表面上,最常见的是以喷泉的形式,这表明失效。


4. 精细元分析

4.1. 模型准备       假定复合材料呈线性弹性,通过 ANSYS 材料设计器算出纤维单向材料特性。选用图 8 所示的代表性体积单元(RVE)来代表六边形纤维位置,所建网格为周期性的,以便应用周期性边界条件。模型中纤维和树脂的材料特性如表 2 所示。碳纤维在纵、横方向的杨氏模量差异显著[57],但因数据表未定义横向杨氏模量,且如[58]所证,可用各向同性弹性模量和泊松比来准确探究 B 系列和 C 系列样本间的差异。对 B 系列纤维体积分数为 45%和 C 系列纤维体积分数为 63%的复合材料均重复进行均匀化处理。表 3 中所得材料特性为横观各向同性,这是正交各向异性的特殊情况。根据查米斯在[59]中的方法,基于纤维拉伸强度乘以纤维体积分数来计算纤维方向上复合材料的拉伸强度 S11T。用于衬垫的钢材料模型为有定义损伤的弹塑性模型,其塑性应变与真实应力图如图 9 所示。在 Abaqus/CAE 环境中准备有限元分析模型,由 Abaqus 6.14 求解。将容器建模为带定义对称条件的四分之一部分,如图 10 所示,压力施加于衬垫内表面。使用 Abaqus 插件 WCM(缠绕复合材料建模器)对复合材料部分建模。因缠绕工艺,圆顶区域复合材料厚度和缠绕角度会改变。WCM 通过将网格划分成集 合并分别为各集 合分配基于缠绕角度计算的材料特性来处理此问题。WCM 创建的单元坐标[60]有切线、法线和环向,如图 11 所示,纤维角度如图 12 所示映射到每个单元。模型的 90°部分根据测试对象实测厚度创建,用卡尺测量死后壁厚。通过绑定相互作用建立衬垫与复合材料的界面。模型中使用 C3D8 单元,它是通用线性砖形单元[61]。主要关注区域是圆柱体,该区域预计无弯曲或大应变梯度。选择整个厚度上的单元数量,以在节省 CPU 和内存资源的同时获得准确结果。由纤维张力 F 产生的纤维方向上复合材料的预应力 σt 通过以下等式计算。

     其中 Af 是纤维中所有细丝的组合横截面,vf 是纤维体积分数。确定的应力在环向和轴向方向进行了转换,并用作 C 系列复合材料模型中应力的初始条件。

                      图13 A系列钢衬里破裂压力试验的模拟及照片

               图14 由纤维张力80 N引入的初始(残余)应力,无内部压力

4.2. 钢衬里的有限元分析结果       图 13 描绘了根据冯·米塞斯假设对所分析的衬里几何模型得出的等效应力。可以注意到,在距离焊缝大约 5 厘米处,圆柱部分的应力变得均匀。另一方面,底板中的应力位于不同位置,但它们的值远低于圆柱部分的应力。容器在圆柱体中部受损,断裂呈轴向。基于容器的受损方式,可以得出几何特征的选择和焊接技术的选择是正确的。不需要额外的措施,例如以加热接头的形式,因为测试区域,即圆柱体,表现如预期。4.3. 用标准(3N)和增加(80N)纤维张力缠绕的复合材料容器的有限元分析结果       长丝缠绕过程中的初始纤维张力会产生残余应力,如图 14 所示。仅考虑圆柱部分,钢衬里受到压缩,而复合层处于拉伸状态。当向容器内部施加 70MPa 的内部压力时,与没有纤维张力的 B 系列容器相比,C 系列容器中复合材料在纤维方向上的应力更高(图 15(a)和(b))。当比较由纤维方向上的应力产生的应力作用与拉伸强度时,C 系列容器的应力作用低于 B 系列容器(图 15(c)和(d)),这主要是由于具有更高纤维体积分数的复合材料中拉伸强度的增加。对于两种类型的容器,70MPa 的内部压力都会导致衬里的塑性变形,但 C 系列容器的塑性等效应力较低(图 15(e)和(f))。在内部压力为 10MPa 时,对钢衬里线性弹性区域的应力分布进行了分析,如图 16 所示。A 系列获得了最高的应力值。一个有趣的结果是 C 系列衬里的环向应力较低。B 系列和 C 系列容器之间衬里环向应力的差异等于 44MPa,这对应于初始纤维张力引入的压缩应力(图 14)。

5. 实验研究与统计分析

5.1. 爆破压力       爆破试验的代表性实验结果如图 17 所示,展示了测量的环向应变和轴向应变随压力的函数关系。有限元分析模拟的结果也包含在这些图中。对于 A 系列,在达到 120 巴之前可以观察到线性弹性区域,而对于更高的压力会发生塑性变形和快速损坏。对于 B 系列和 C 系列,可以观察到曲线的双线性特征:在第一个区域中,衬里和复合材料弹性变形,在过渡(屈服)点之后的第二个区域中,可以观察到衬里的塑性变形直至泄漏。所有复合材料容器(B 系列和 C 系列)在圆顶和圆柱体之间的钢衬里焊缝处发生损坏(图 18)。实验中使用的大量应变传感器进行了统计分析,总体结论在下一节中给出。屈服点对于容器设计至关重要,与该点对应的应变和压力值是 B 系列和 C 系列比较的重要方面。

5.2. 统计分析       统计分析用于量化纤维张力对机械性能的影响。为此,将获得的每条曲线都转换为双线性模型(根据图 19)。每个图表(应变计的应变与压力)都可以用两个线性函数(双线性模型)来描述,具有不同的调整斜率因子(a1)和(a2)。参数 c 和 d 分别表示屈服点出现时的应变和压力(图 19)。对于统计分析,进行了曼-惠特尼检验。这种方法基于观测值的秩,如果所有样本都来自一个总体,那么预计每个组中的平均秩将相似。系数 c 和 d 的概率低于显著性水平α=0.05(表 4)且 p 值小于 0.05。这表明低(3N)和高(80N)纤维张力的容器之间存在统计学上显著的差异。对上述值的分析证实,纤维张力为 3N 的容器的测试结果与纤维张力为 80N 的容器在统计学上不同。5.3. 纤维体积分数和重量效率       有四个因素可用于评估高压容器的效率——重量储存密度、重量能量密度、体积储存密度和体积能量密度。储存密度表示与系统重量相关的效率,而能量密度值参考与储存能量相关的效率。在本节的进一步研究中,使用重量储存密度来评估制造的压力容器。重量储存密度ηgrav 描述了罐装介质质量 mMedium 与由总储存质量 mStorage 和所储存介质质量组成的整个罐系统质量的关系:ηgrav = mMedium / (mStorage + mMedium)        圆柱形罐的直径、长度和封头部分的几何形状确定了圆柱形罐的尺寸。考虑到一个圆柱形复合高压罐,在基础设计水平上设计复合材料的基本参数定义了重量效率,如使用的纤维和基体及其密度、纤维的杨氏模量和衬里的材料类型[62]。一般来说,根据制造过程,通过各种制造参数可以实现进一步的改进。在本文中,详细评估了纤维缠绕过程中的纤维张力参数。

   图15。内压力70 MPa钢衬里纤维方向的应力、相对复合强度和塑性等效性
      纤维张力参数通过减少纤维缠绕过程中使用的基体材料来增加复合材料的纤维体积分数(FVF)。因此,重量减轻提高了圆柱形复合压力容器的重量效率。表 5 显示了不同压力容器的 FVF 和重量储存密度的改进情况。对于重量效率的考虑,使用压力水平为 70MPa 的氢气作为介质。对于储存的 70MPa 氢气,重量储存密度的平均增加约为 6.1%(表 5)。接下来,对同一个压力罐在高达 100MPa 的所有氢气压力水平下进行研究,以更好地了解不同纤维张力的影响。
      由于纤维张力仅对压力容器的复合部分产生影响,因此图 20(左)比较了所有压力水平下仅复合结构的重量储存密度。氢气是一种真实气体,出于这个原因,填充因子与重量储存密度的关系并非线性的。随着压力水平的提高,氢气压缩效果降低,如图 20(左)所示复合结构的重量储存密度差值也降低。图 20(左)还显示了仅复合部分重量储存密度增加的影响。这种增加,根据压力水平,总体差值在 24.8%至 29.2%之间。必须注意这个评估,因为假设在整个考虑过程中压力容器的重量保持不变,因此,这个评估给出了如果压力容器设计为 100MPa 时可能产生的效果概述。对于设计为较低压力水平的压力容器,必须重新评估这种影响,因为压力容器的设计应根据其应用和压力水平进行优化。图 20(右)显示了填充因子随标准偏差相对于纤维张力的增加。对于整个 77N 的纤维张力差值,填充因子增加的平均差值约为 18%。对于相同的纤维张力差值,填充因子的最小差值约为 14%,最大差值约为 23%。默蒂尼和埃林[62]也比较了纤维张力对填充因子的影响。将这些值与本文确定的值进行比较,发现每个纤维张力下填充因子的增加量不同。为了更好地概述,表 6 显示了在特定纤维张力差值下的不同增加值。

                                图17 环向和轴向应变图的代表性结果      本文实验的增加值比默蒂尼和埃林的高出三分之一。此外,纤维张力差值以及填充因子差值都明显更高。考虑到标准偏差,本文确定的最小增加值在千分之一上是相同的。这种比较不够定量,无法给出进一步的假设。假设纤维张力和填充因子之间的关系不是线性的,因为存在最小和最大填充因子,必须进行进一步的研究以做出更明确的假设。5.4. 声发射(AE)      进行这项研究是为了确定纤维张力对复合容器在内部压力加载下行为的影响。假设结构连续性的损失(密封性损失、容器破裂)将发生在圆柱形部分。出于这个原因,用于测量声发射的传感器分别布置在容器中部和与底部连接的区域。使用了带有 AEP3N 前置放大器和 VS150-M 传感器的 AE 系统 AMSY-5。AE 传感器的频率范围为 100-450kHz(峰值频率-150kHz)。系统设置如下:阈值 40dB,持续时间鉴别时间 0.2ms,重新触发时间 0.4ms,前置放大增益 34dB。对于测量数据的后处理,使用了软件 Vallen VisualaAE(发布:2017.0504.2)和 Vallen Feature Extractor。传感器用弹性带成对安装,使得每对形成一个相对于相邻对旋转 90°的环。在一个环内,传感器位于容器的相对两侧(3 个环,每个环有 2 个传感器,相互旋转 90°)。在传感器和测试对象之间放置了硅脂形式的耦合剂。容器以恒定的 15 巴/分钟的速度加载液压压力。分析的目的是检测不同张力容器的声发射信号的差异,假设容器尚未出现显著损坏。

                      图16  A、B、C系列内部压力为10 MPa时的环向应力比较。
对于纤维张力最小(3N)的容器,大多数事件(高振幅和低振幅)位于圆顶内和周围,而在容器(圆柱体)中心记录的要少得多。对于高纤维张力 80N(C 系列),事件的集中情况则相反,如图 21 所示。

18. a)压力试验后损坏的复合材料容器,b)去除复合材料后的容器,标记观察到的漏水。

       B 系列容器的峰值频率通常为 150kHz 及以下,个别偏远情况下可达 200kHz。对于 C 系列容器,大量的峰值频率取 200kHz 的值,有时更高。低峰值频率与基体缺陷相关,而较高(约 200kHz)的峰值频率表明在树脂-纤维界面发生了事件[63]。比较如图 22 所示。

图19 用实验数据拟合双线性函数的一个例子,其中c=为1.05‰,d=为163 bar。


表4c和d系数的统计分析,Manna-Whitney检验。

图20 重量复合材料密度和三角洲的表示增加了重量密度作为压力和纤维体积分数作为纤维张力的函数。

图21比较事件的位置。左图,高度振幅事件(>75 dB),右图,低振幅事件,例如每个系列中的容器


图22。例如B系列和c系列容器的峰值频率。在红色方块中,峰值频率(~200 kHz)表示树脂-纤维界面区域内的事件发生。(为了解释本图例中对颜色的参考资料,读者可以参考本文的网络版本。)

6. 讨论     

在本研究中,研究了缠绕过程中纤维张力对复合压力容器力学性能的影响。根据制造、模拟和爆破试验的结果,可以得出以下结论:     1. 选择 54的缠绕角度是由于其最优性,这在[64-67]中通过分析和实验得到了证明。     2. 在本研究中,由于材料的线性性质,使用了钢衬。钢质封头能够传递高压值,并保证与凸台稳定连接。研究区域是容器的圆柱形部分。在钢衬中,圆柱形部分以同样的方式变形,A 系列试验证实了在圆柱体的每个点变形相似。材料的线性模型允许对获得的结果进行更详细的分析。可以确定其他因素的影响,钢衬厚度的变化与线性模型的方向性系数的影响有关。作者在前一篇出版物[54]中对聚合物衬里进行了研究,其中已经证明了出现的非线性问题和结构缺陷。3. 在复合容器生产中,正常纤维张力为 10N。该出版物的作者和其他[68]先前的研究表明,使用更高的张力值可能对制造容器的强度产生积极影响。4. 同时,增加纤维张力的使用给制造过程本身带来了挑战。使用更高的纤维张力促进了纤维的降解,在过程中以及在压力容器表面都可以看到纤维磨损。此外,增加的纤维张力提高了纤维铺设过程中的敏感性,这可能导致纤维从封头上指定路径滑落的风险增加。    5. 在爆破试验期间进行了周向和轴向应变的测量。分析区分出了一个线性区域、一个屈服点和衬里的塑性变形区域。对该点的统计识别及其静态处理允许确定以下屈服值:对于 3N 和 80N 的张力,分别为 170N 和 205N。6. 使用一步均匀化方法(规则六边形单元,周期性边界条件[69-73])使得能够为单向复合材料获得正交各向同性均质材料模型。为了更准确的研究,应该考虑“第二步”均匀化,包括镶嵌图案的微观模型。7. 所应用的数值分析允许验证具有张力的复合材料的预应力确定值。8. 建模表明,容器将在焊接区域发生损坏。图 15 显示了集中在焊接区域的塑性变形区域。9. 如预期的那样,纤维张力参数增加了纤维体积分数以及重量效率,但必须进行进一步的研究以假设纤维张力和纤维体积分数之间的定量相关性。10. 对于具有高纤维张力(80N)的容器,声发射在中心区域显示出更多的高振幅事件。从频率响应分析我们可以得出结论,与低纤维张力(3N)相比,对于用高纤维张力(80N)缠绕的容器,在纤维-树脂界面处发生的缺陷更多

7. 结论

       使用增加的纤维张力对复合压力容器的工作压力弹性线性范围有影响。它增加了公称压力并具有积极的经济效益。提高的纤维张力导致复合材料中的纤维体积分数增加(从 45%增加到 63%),在材料厚度更薄的情况下改善了力学性能。在超轻复合结构和氢基交通的时代,优化复合压力容器的制造参数是一个战略目标。在测试结构中,通过在钢衬中也引入压缩应力,同时将复合材料层的厚度从 4.75 毫米减少到 3.51 毫米,有可能将线性范围从 170 巴增加到 205 巴。已经证明,在复合压力。


来源:气瓶设计的小工程师
ACTMechanicalAbaqus断裂复合材料非线性通用航空汽车建筑UM声学焊接材料多尺度控制ANSYS
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-05-14
最近编辑:7月前
气瓶设计的小攻城狮
硕士 从事IV储氢气瓶行业。
获赞 33粉丝 53文章 218课程 0
点赞
收藏
作者推荐

2023年回顾|全球氢能行业的主要发展和趋势(第1部分:生产)

本文摘要:(由ai生成)2023年绿色氢能发展受补贴计划推动,但补贴延迟影响投资决策。美国绿色氢生产目标难实现,蓝氢受质疑,天然氢受关注。欧盟、英国、印度和澳大利亚等地也推补贴计划。成本上升、补贴延迟影响电解槽制造商。欧盟和美国对氢气生产要求增加成本。蓝氢甲烷排放问题引发关注,天然氢因低成本和低碳排放受青睐,尤其在澳大利亚和法国。对于许多人来说,2023年应该是绿色氢能从理念变为现实的一年,一波政府补贴计划即将生效,这几乎将保证可再生H2项目的盈利能力。但世界上最重要的补贴计划——美国清洁氢生产税收抵免、欧盟绿色H2拍卖、德国主导的H2Global计划、英国差价合约招标、印度国家绿色氢使命和澳大利亚氢先导计划——都已取得成果的时间比预期更长,延迟了开发商的最终投资决策(FID),对投资者和电解槽制造商产生了连锁反应。然而,虽然大规模清洁氢生产可能尚未成为现实,但行业参与者和政府已经出现了新的现实主义——无论是生产绿色H2的成本还是应补贴使用它的部门。美国到2031年以每公斤1美元的价格生产绿色氢的目标现在看来更像是一厢情愿,而不是一个可以实现的目标;蓝色氢似乎是次佳选择,只有那些在化石燃料中拥有既得利益的人才会鼓吹;而从地下提取的天然H2却意外地从默默无闻上升到许多国家政治议程的重要位置。政府补贴尽管其主要补贴计划意外延迟,但美国仍然是中国以外绿色氢开发商最具吸引力的市场,因为所有生产商都有资格获得高达3美元/公斤的生产税收抵免,而不仅仅是那些提交了拍卖中的最低出价。然而,尽管作为《通货膨胀减少法案》的一部分于2022年8月签署成为法律,但有关如何获得信贷资格的规则尚未最终确定,导致许多项目开发商无法做出最终投资决定。这些规则原本预计将于2023年8月公布,但直到2023年12月22日才公布——而且只是草案形式。公布的规则包括有争议的额外性、每小时匹配和地理相关性“三大支柱”,目前正在接受公众咨询,直到2024年3月下旬,目前尚不清楚何时最终确定,这给生产商带来了进一步的延误'最终投资决定尽管拜登政府在10月份成为世界各地的头条新闻,因为它透露七个地区氢中心将根据2021年两党基础设施法中规定的计划获得70亿美元的政府资金,但这些奖励仍需进行谈判,而且向开发商支付第一笔款项可能需要一年或更长时间。欧盟早在6月份就最终确定了自己对绿色氢及其衍生物(所谓的非生物来源可再生燃料,或RFNBO)的定义,其中包括最初的三大支柱。这使得欧盟委员会能够在今年11月启动其8亿欧元的欧洲氢银行试点拍卖,每公斤生产的可再生H2固定付款高达4.50欧元,每公斤最低的投标人将赢得资金。德国上周在招标中额外追加了3.5亿欧元,作为“拍卖即服务”模式的一部分,该资金仅提供给该国投标人中的生产商。获胜者可能会在2024年4月公布,第二次22亿欧元的拍卖将于春季举行。英国早在2022年7月就开启了全球首个国家清洁氢补贴拍卖,但直到2023年12月中旬才宣布中标者。为英国总计125MW的11个项目分配超过20亿英镑(25.3亿美元)的补贴是一项重大进展,设定了每公斤H2高达9.49英镑(12美元)的有效执行价格。因此,虽然该差价合约(CfD)计划中的补贴金额将根据天然气价格而波动,但获胜的开发商将在15年内获得这一收入水平的保证。但英国并不是第一个宣布绿色氢生产补贴计划获奖者的国家——这一荣誉于10月底授予了丹麦,当时丹麦公布了12.5亿丹麦克朗(1.77亿美元)绿色氢(及衍生品)中的6个获奖项目。拍卖。其他补贴计划今年也出现了进展,澳大利亚上周公布了六个绿色氢项目,这些项目进入了其20亿澳元(13.5亿美元)氢先导计划的最终候选名单;印度几天前公布了超额认购的首次绿色氢拍卖的投标人名单。德国H2Global氢(及衍生品)进口计划的首次招标于2022年11月开始,但中标者尚未公布。H2Global基金会发言人10月向HydrogenInsight表示,希望公布2024年1月至6月期间前三场拍卖的获胜者。与此同时,德国和荷兰宣布将于明年启动6亿欧元的H2Global联合拍卖,这可能是该计划在欧洲范围内推广的前奏。正如HydrogenInsight上周独家透露的那样,在德国提供4.34亿欧元(合4.75亿美元)现金注入后,欧洲投资银行(欧盟的贷款机构)也准备为发展中国家的可再生H2生产提供投资补助。韩国和日本本月透露,他们也将在来年推出自己的补贴。日本政府已向差价合约式计划拨款3万日元(208.6亿美元),而韩国总理韩德洙表示,该国将“扩大对清洁氢的税收支持”,并暗示将推出仿效的生产税收抵免那些在美国的人。简而言之,世界各地正在为清洁氢提供数十亿美元的补贴,这将使许多大型项目变得有利可图。因此,最终投资决策应在2024年做出,届时数十亿美元的融资将流入最终投资决定延迟由于口袋里没有大量补贴,甚至不清楚他们可以获得补贴,几乎所有美国和欧洲开发商都推迟了项目的最终投资决定公司金库。但也有明显的例外。5月,沙特阿拉伯2.2GWNeom绿色氢和氨项目达成最终投资决定,开发商——美国工业气体公司AirProducts、沙特国有NeomGreenHydrogenCompany和沙特可再生能源开发商ACWAPower——签署了价值数十亿美元的融资协议与当地、区域和国际贷款机构合作的84亿美元。空气产品公司获得了该项目价值67亿美元的工程、采购和施工(EPC)合同,该项目将于2026年开始运营,而且这家美国公司还将购买30年内生产的所有H2。NeomFID对于德国电解槽制造商ThyssenkruppNucera来说也是一个巨大的胜利,该公司为该项目提供所有电解槽。尽管规模不同,但在11月底,由铁矿石亿万富翁安德鲁·福雷斯特(AndrewForrest)领导的澳大利亚Fortescue对其前两个绿色氢项目进行了最终投资决定,即美国的80兆瓦凤凰城氢中心和澳大利亚昆士兰州的50兆瓦项目。蓝色氢的支持者也感到高兴,过去两个月宣布了两个项目的最终投资决定(均位于荷兰鹿特丹港)。11月初,空气产品公司表示,已采取最终投资决定,通过改造碳捕集技术,将现有的日产300吨灰色氢气工厂转变为蓝色H2,其法国竞争对手液化空气公司也在该公司的一个类似项目上进行了最终投资决定。鹿特丹港上周虽然其产量规模尚不清楚。对于电解槽制造商来说,这不是一个美好的一年由于补贴延迟转化为项目延迟,电解槽订单的预期增长并未实现,几乎所有上市电解槽制造商的收入均低于预期,随后股价下跌。法国制造商McPhy今年以来股价下跌超过73%,美国PlugPower公司股价也下跌超过60%。挪威的Nel(下跌约53%)、意大利的Enapter(下跌约48%)、ITM(下跌约40%)和BloomEnergy(下跌约20%)的股价也下跌。尽管蒂森克虏伯Nucera在2.2GWNeom订单的推动下,于7月宣布进行25亿欧元的IPO,但其股价此后已从交易首日的23.52欧元跌至本文发布时的每股18.10欧元,跌幅仅为18.10欧元。超过23%。尽管如此,工厂扩张计划今年才有所增长,宣布了数吉瓦的额外产能,尤其是在美国。Nel已承诺在密歇根州建设一座4GW工厂,而比利时的JohnCockerill已开始在德克萨斯州建设一座1GW工厂,计划于明年夏天开始生产。今年,中国电解槽制造商涌入全球市场,HydrogenInsight上个月获悉,欧盟委员会希望出台规则,阻止欧盟对绿色氢的补贴被用来购买中国产品。电解槽,以保护欧洲制造商。早在今年1月,就有21家欧洲氢能公司要求采取这一举措,但德国显然阻止了这一举措。虽然中国最近的拍卖结果表明电解槽的成本低得令人瞠目结舌,但HydrogenInsight本月早些时候获悉,该国的旗舰绿色氢项目——260MW库车工厂——尚未投入运营的最大工厂——没有安装中国制造的电解槽一直工作正常。虽然这可能会阻止西方开发商购买中国设备,但一些美国和欧洲制造的电解槽也出现了技术问题。HydrogenInsight在8月份透露,由于装置内部存在气体混合,美国康明斯公司已下令关闭安装在欧洲各地的多台HyLyzer500PEM电解槽进行维修。今年3月至7月期间,ITMPower生产的电解槽中有15-40%未通过装运前测试。开发商了解成本去年,政策制定者和分析师都看好将氢气生产成本降至2美元/公斤以下,美国将“氢弹”目标设定为到2031年1美元/公斤。成本下降的大部分预计将来自经济体H2项目和供应它们的电解槽工厂的规模以及更高效的设备。然而,到2023年,开发商承认,不仅到2031年的预期成本将高得多,而且目前绿色氢的成本实际上正在上升,原因不仅是电解槽的成本上涨,还包括风力涡轮机和发电机组的成本上涨。太阳能电池板为项目供电,约占H2平准化成本的60-75%。而且,根据9月份发表的一项经过同行评审的科学研究,与更宽松的每年匹配相比,欧盟(以及即将成为美国)每小时相关性的要求预计将使氢气生产成本增加27.5%为蓝氢停止加油?由天然气通过碳捕获和储存生产的蓝氢多年来一直备受争议,环保组织和研究人员认为,它会鼓励继续使用化石燃料,并增加破坏地球的甲烷排放的风险。本月早些时候,美国能源部发布了一份报告,表明根据这些排放量,蓝氢生产商可能没有资格获得即使是最低税率的生产税收抵免。尽管七个获胜的美国氢中心中有四个包括蓝色H2的生产,但还是出现了这种情况。除了使用H2进行炼油的化石燃料行业之外,蓝氢的潜在购买者似乎也很少。很简单,大多数潜在用户更愿意拥有绿色氢。例如,全球最大的石油公司沙特阿美公司(SaudiAramco)今年5月透露,该公司正在努力为其计划的蓝色氢产量寻找欧洲买家。目前欧盟没有对蓝氢生产商或进口商提供补贴,今年签署的四项指令——可再生能源指令、替代燃料基础设施法规、FuelEU和ReFuelEU航空——都强制要求使用绿色氢,而不是蓝氢,因此对可再生H2产生了巨大的需求,而对蓝色则完全没有需求。然而,虽然美国的蓝色H2由于甲烷排放可能没有资格获得生产税收抵免,但美国的开发商确实可以选择申请碳捕获的45Q税收抵免。加拿大正在向那里的蓝氢生产商发放大量纳税人资金,空气产品公司上个月从联邦和省级资金中净赚了4.75亿加元(合3.51亿美元),用于计划价值16亿美元的“净零”蓝氢综合体。阿尔伯塔省的产区。正如前面提到的,虽然空气产品公司和液化空气公司最近都对鹿特丹的蓝色H2项目进行了最终投资决定,但开发商今年也以经济状况不佳为由搁置了主要的蓝色氢项目。化肥巨头Nutrien在季度财报电话会议上表示,将推迟对其位于路易斯安那州Geismar的一座年产120万吨蓝氨工厂进行FID“至少24个月”,而壳牌向HydrogenInsight承认,其700兆瓦产能英国的卡文迪什项目已被终止。首批天然氢勘探者发现黄金就在一年前,很少有人听说过天然氢——也被称为“白氢”或“金氢”。但今年人们对探索自然产生的H2的兴趣高涨,因为它可以提供极低的生产成本和生命周期排放。本月,在法国获得这种“未来能源”的首个勘探许可证后不久,法国总统埃马纽埃尔·马克龙承诺提供“大量资金”来探索天然氢的潜力。4月,英西班牙公司HeliosAragón表示,它在比利牛斯山脉山麓发现了一个巨大的地下氢储层,一个月后,在法国东北部先前钻探的一口井中发现了“大量”自然产生的H2。就连美国政府也已启动了价值2000万美元的资金募集,以开发测量和提取天然氢的技术。但天然氢最重要的发展出现在南澳大利亚,初创公司GoldHydrogen在拉姆齐1号和2号探井钻探过程中发现了“高浓度”的H2。今年,所有人的目光都将集中在该公司,因为该公司正在快速开发提取和销售这种H2的试点项目。来源:气瓶设计的小工程师

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈