全面了解冲击载荷下材料和结构的动态行为对于可靠的海洋管道和相关结构的设计和维护至关重要。然而,对于海洋管道中常用的碳钢的本构和失效模型的完整表征还缺乏全面的研究。本文对 Q235 钢在光滑试样上进行室温准静态拉伸试验,利用 Johnson-Cook (J-C) 模型获得本构参数。随后,对缺口试样进行准静态拉伸试验,对光滑圆棒进行动态拉伸试验,以获得应力三轴度和失效应变。然后利用所获得的数据使用 Johnson-Cook (J-C) 损伤模型来拟合失效参数,这是一种通过最小二乘法在高应变率应用中广泛接受的本构模型。最后,根据获得的实验参数对拉伸试验进行数值模拟。所得结果表明,J-C本构模型拟合的曲线与实验拉伸曲线非常吻合。此外,测试和模拟的载荷-位移曲线之间的高度相关性为 Q235 钢动态机械参数的准确性提供了可靠的验证。这些发现为了解海洋管道中常用碳钢的行为提供了宝贵的见解,增强了对其对冲击载荷响应的整体理解,并为更可靠的设计和维护实践提供了信息。
关键词:海洋管道;动态行为;Johnson–Cook模型;拉伸试验;数值模拟
一、简介
海洋油气资源的开发利用对于国家能源供应至关重要。海洋管道作为运输这些宝贵海洋资源的重要管道发挥着至关重要的作用。海洋环境面临着诸多挑战,因为管道受到各种来源的潜在影响,包括海啸、风暴潮和地震等自然灾害,以及坠落物体和拖网捕鱼等人类活动[1, 2]。因此,海底管道和薄壁金属结构会经历高速动态过程,导致显着变形 [3, 4]。当受到冲击载荷时,这些结构容易出现局部凹陷和开裂损坏,对管道的安全可靠性造成直接威胁。严重时,这种损坏会导致管道泄漏和爆炸事故。因此,对这些结构的动态力学性能进行全面研究对于准确表征材料失效行为至关重要,从而提高其整体安全性和性能。
对海洋管道的影响涉及快速变形和损坏过程。材料的本构关系与静态场景明显不同。上述大多数研究都是根据宏观管道变形的程度来衡量损坏情况,而忽略了应变率效应造成的材料损坏。需要进一步研究管道材料的动态机械性能。
因此,本文采用万能材料试验机和霍普金森杆(SHTB)实验系统,综合研究海洋管道常用Q235钢的室温准静态和动态拉伸性能。根据J-C模型确定参数。此外,通过数值模拟验证了J-C模型的准确性,为海洋管道的冲击动力设计和损伤评估提供了有价值的参考。本研究的主要变量参数总结于表1中。
2 本构模型和损伤模型
2.1.Johnson–Cook本构模型
J-C本构关系如式(1)[34, 35]所示,
(1)
其中 𝜎 是等效应力, 𝜀 是等效应变, 𝐴 是材料的屈服应力, 𝐵 和 𝑛为应变硬化常数, 𝐶 为应变速率强化系数, 𝜀*=𝜀˙/𝜀0为无量纲应变速率, 𝜀0˙ 为参考应变速率,
J-C 本构模型包含三个基本组成部分,它们解释了材料对应变硬化、应变率强化和温度软化的响应,显着影响流动应力。在温度影响可以忽略不计的情况下,可以省略代表温度软化的第三项,从而得到本构模型的简化形式,如方程(2)所示。
(2)
参数 𝐴 、 𝐵 和 𝑛 可以通过在参考应变率和参考温度下对光滑圆棒进行准静态拉伸试验来确定。在这种情况下,方程简化为方程(3)。
(3)
试样拉伸过程中,材料初始屈服点对应的应力记为 𝐴 。对式(3)两边取对数,可得:
(4)
通过对 ln(𝜎−𝐴) - ln𝜀 曲线进行线性回归,可以确定斜率和截距值,分别对应于 𝑛 和 𝐵。
在不同应变率下进行拉伸试验,探讨应力与应变率之间的关系。在每个应变率下,测量一致应变水平下的应力值以检查它们的相关性。给定应变水平下的应力和应变率之间的相关性由方程(5)进行数学描述,为了解材料在不同负载条件下的行为提供了有价值的见解。
(5)
接下来,针对每个固定应变水平的应变率的自然对数绘制应力值。通过分析这些数据,可以精确确定应变率灵敏度常数,表示为 𝐶 。
2.2.Johnson–Cook损伤模型
J-C 损伤模型提出,随着时间步数的增加,材料的塑性应变会累积。当累积的塑性应变达到材料的断裂应变时,损伤值变为1,表明材料失效,如式(6)所示。
(6)
其中, ∆𝜀𝑝表示等效塑性应变增量, 𝜀𝑓 表示当前时间步的有效断裂应变。有效断裂应变由应力状态、应变速率和温度决定,其表达式由方程(7)给出[34, 35]。
(7)
其中, 𝐷1 至 𝐷5为材料损伤参数, 𝜎*=𝜎𝑚/𝜎, 为应力三轴度, 𝜎𝑚 为平均应力, 𝜎 为等效应力,计算公式如下:
(8)
(9)
在上面的方程中, 𝜎1、 𝜎2和 𝜎3是主应力。
J-C损伤模型也由三部分组成,分别代表应力三轴性、应变速率和温度对材料失效应变的影响。当不考虑温度影响时,式(7)可简化为:
(10)
在参考应变率下,失效应变与应力三轴度之间的关系变为:
(11)
在不同应变率下进行拉伸试验,采用最小二乘法对数据进行拟合,即可确定参数 𝐷1 至 𝐷 的值。此外,在相同的应力状态下,材料的失效应变与相对应变率的自然对数呈线性关系,该线性关系的斜率给出了参数 𝐷4的值。
3.材料力学性能测试
3.1.测试材料
由于Q235钢在海洋油气管道中的广泛应用,本研究选择Q235钢作为试验材料。本次调查中使用的样品取自直径为 15 毫米的均匀 Q235 钢棒,其主要化学成分详见表 2。
鉴于海洋环境中几乎不存在温度引起的材料软化现象,本研究主要集中在材料在不同应变率下的响应,并将温度效应排除在分析范围之外。因此,确定式(2)和(10)中的八个公共参数足以表征材料的本构关系和失效应变。
3.2.光滑样品的准静态拉伸试验
使用光滑样品设计了一系列准静态拉伸试验。测试样本的详细尺寸如图 1 所示。选择两个不同的应变率 0.001 s −1 和 0.0001 s −1 来评估材料在不同负载条件下的响应。为了确保数据的准确性和有效性,在每个应变速率下进行两组拉伸试验,试样编号指定为1-1至1-4(试样1-2和1-4作为对照试验)。
图 1. 光滑拉伸试样尺寸(单位mm)
记录并计算载荷和位移,得出 Q235 钢的工程应力-应变曲线,如图 2 所示。
图 2. 光滑圆棒准静态拉伸试验的应力-应变曲线
工程环境中常用的传统标称应力-应变曲线在准确描述钢在塑性变形阶段的完整本构行为方面存在局限性。为了更真实地表示材料在拉伸载荷下的塑性变形响应,必须采用真实的应力-应变曲线。该真实曲线可以通过工程应力-应变曲线的变换得出,该变换是在样本内颈缩开始之前执行的。数学变换,如方程(12)和(13)[3]所示,有助于推导所述真实应力-应变曲线。
(12)
(13)
其中, 𝜎′ 和 𝜎分别为工程应力和真应力, 𝜀′和 𝜀 分别为工程应变和真应变。
图中直观地描绘了四个断裂试样的形态,为了解 Q235 钢在准静态拉伸条件下的断裂行为提供了关键见解。值得注意的是,断裂起始主要发生在每个样本的中心,导致在断裂区域观察到明显的颈缩。使用公式(14)计算样本 1-1 至 1-4 的面积减少量:分别为 58.53%、56.51%、56.31% 和 54.64%。式中, 𝐴0 和 𝐴𝑓 分别表示试件断裂前后标距截面的横截面积。此外,断裂表面呈现出明显的 45 度角,为拉伸测试期间出现显着塑性变形提供了令人信服的证据。确定Q235钢的弹性模量为200 GPa,精确测得平均屈服强度为361.2 MPa,对应于J-C本构模型中参数 𝐴 的值。
(14)
进行了全面的拟合分析以建立 ln(𝜎−𝐴)和 ln𝜀之间的关系,如图 3 所示。拟合过程产生了两个基本参数, 𝐵 = 526 MPa 和 𝑛 = 0.58,表征材料在准静态拉伸条件下的响应。
图 3.ln(𝜎−𝐴)-ln𝜀 拟合曲线
3.3.缺口试样的拉伸试验
对杆中心具有不同缺口半径的样品进行拉伸试验,以研究材料在不同应力状态下的行为。为了获得不同的应力三轴度,设计了四种不同的缺口半径:1 mm、2.5 mm、4 mm和5.5 mm,覆盖了广泛的应力状态。试件尺寸如图 4 所示。试件编号为 2-1 至 2-8,其中 2-5 至 2-8 号试件作为对照试验进行对比分析。所有测试均选择 0.001 s −1 的恒定拉伸应变率,以确保实验设置的一致性和准确性。
图4 缺口试样尺寸(单位mm)
图5给出了不同缺口半径试样的应力-应变曲线。随着缺口半径的增加,材料表现出改善的塑性行为。
图5 不同缺口试样应力-应变曲线
在光滑试样的拉伸试验中,应力三轴度为-1/3。然而,对于缺口试样的拉伸试验,应力三轴度可由式(15)计算:
(15)
其中, 𝑎 是样本半径, 𝑅 是缺口半径。
图 6. 失效应变与应力状态曲线
图6给出了不同应力三轴度条件下的失效应变数据。拉伸试验结果如表3所示。在准静态拉伸试验中,失效应变随着应力三轴度的增加而减小。根据图6所示数据,利用式(11)进行拟合分析,确定参数 𝐷1 至 𝐷3 ,其中 𝐷1 = 0.2918、 𝐷2 = 4.6156、 𝐷3 = 6.1566。
3.4.不同应变率下的霍普金森拉伸试验
分裂霍普金森棒试验是一种广泛采用的技术,用于研究金属材料的动态机械性能,特别是高应变率下的动态拉伸行为。这种多功能测试方法涵盖广泛的应变率范围,通常从 10 2 到 10 4 s −1 ,能够对动态载荷下的材料响应进行全面分析状况。本实验旨在通过测量不同应变率下的应力-应变曲线,获得J-C材料模型所需的基本参数。
为了全面表征Q235钢的动态拉伸性能,在500 s −1 、1500 s −1 和2500 s −1
图7 分体式霍普金森拉杆装置测试原理
测试装置由三个主要部件组成:撞杆(或输入杆)、样本和传动杆(或输出杆)。撞杆是一种高强度杆,被弹丸(通常是气 枪)撞击以产生应力波。它与样本接触。测试材料呈薄圆柱体或管状,放置在撞杆和传动杆之间。当撞杆受到冲击时,它会向样本传输应力波,从而产生张力。一部分脉冲通过样本传播,引起快速塑性变形。同时,一部分脉冲穿过样本,渗透到传输杆,随后被缓冲机构消散。此外,残余部分通过撞杆向后反射回来。传输杆将应力波传输到一组应变仪或其他测量装置。这些应变计测量样品在张力下的变形,例如入射应变 𝜀𝑖 、反射应变 𝜀𝑟 和透射应变 𝜀𝑡 。通过分析应力和应变数据,可以确定材料的动态拉伸性能,例如应力-应变曲线、应变率敏感性和高应变率下的断裂行为。
图 8. 霍普金森拉伸试样的尺寸(单位:mm)
样本尺寸如图 8 所示。进行了三个不同的实验系列,包括双重配置,其中两个系列采用长度为 600 毫米的射弹,应变率为 500 s −1 和 1500 s −1 分别。与此同时,第三个系列的弹丸长度为 400 毫米,应变率为 2500 秒 −1 。值得注意的是,每个实验都被重复以确保结果的稳健性。数据采集后,采用参考文献[36]中所述的古老的经典两波方法对经验结果进行分析,最终推导了精确的工程应力-应变关系。为了抵消样本横向变形产生的潜在影响,采用方程(12)和(13)来实现记录数据的转换,从而提取真实的应力和应变表现。
图 9. 等效应力与无量纲应变率的拟合曲线
在参考应变率 𝜀0˙ =0.001 s −1 时,Q235钢的等效应力和失效应变随无量纲应变率 ln𝜀* 自然对数的变化为在一致的塑性应变水平下绘制。这些图分别如图 9 和图 10 所示。我们的研究结果强调了应变率对 Q235 钢的等效应力和失效应变的重大影响。值得注意的是,该材料在低应变率和高应变率下表现出明显的线性关系。特别是,在较高应变率下,等效应力和失效应变对应变率变化表现出更高的敏感性。
图 10. 失效应变与无量纲应变率的拟合曲线
通过对不同应变率下的等效应力和失效应变数据进行拟合,成功确定了参数 𝐶 和 𝐷4 的值,如图9和图10中的虚线所示。线性拟合结果显示参数值 𝐶 = 0.0308 和 𝐷4 = 0.0089。
4. 通过数值模拟验证 Johnson-Cook 本构模型和失效参数
4.1.有限元模型
使用 Johnson-Cook 模型的有限元分析 (FEA) 可以实现应力和应变分布的可视化,以及预测裂纹或皱纹等潜在缺陷。为了验证上节提出的J-C本构模型和失效模型的8个参数的精度,对Q235钢拉伸试验进行了数值模拟。
开发了拉伸试样的三维实体有限元模型,尺寸如图 1 所示。在材料属性模块中,塑性选择 Johnson-Cook 强化模型,Johnson-Cook 损伤模型为选择用于延展性金属损伤。表4列出了从拉伸试验中获得的参数。
损伤演变的失效位移设置为 0.001 mm。材料密度为7850 kg/m 3 。通过将量规部分的网格尺寸设置为 0.5 mm,并在夹具部分适当增加尺寸,确保了计算精度。该模型总共包含 32,240 个元素,如图 11 所示。
图 11.网格模型
两个参考点分别设置在试件的顶端和底端。在参考点和夹具部分之间应用耦合约束。当底部参考点保持固定时,对顶部参考点施加 0.04 mm/s 的受控垂直向上速度。
为了精确确定应变值,在模型的量规部分选择了两个参考点,如图 11 所示。两点之间的距离为 34 mm。它们沿拉伸方向的位移在历史输出部分中设置。另外,顶部参考点的反作用力也在垂直方向上输出。
4.2.有限元分析
显式动态分析的加载时间为 684 秒。分析中采用了质量缩放技术,以提高模拟的稳定性和效率。这允许更大的时间步长,并且可以显着降低计算成本。缩放因子设置为 2 × 10 4 。
图12给出了整个拉伸过程中内能和动能的变化曲线。最大动能为343焦耳,远小于内能的5%。因此,将缩放因子设置为 2 × 10 4 是合理的。
图 12. 内能和动能曲线
不同阶段的等效应力云图如图13所示。在拉伸过程开始时,保径截面的等效应力分布均匀且较低。随着时间的推移,样品逐渐伸长,同时沿圆周方向收缩。标距范围内的等效应力不再均匀分布,并从中心向两端减小。当时间达到558 s时,试件中心明显颈缩,应力集中。随后,在 570 秒时发生断裂。
图 13 不同阶段的等效应力云图
应变是根据图 11 中两点之间在拉伸加载之前和之后相对于原始标距的位移相对变化来计算的。随后,绘制了模拟获得的载荷-位移曲线,并与相应的实验结果进行了比较,结果吻合良好(图 14)。在模拟结果中观察到显着的波动,如曲线末尾所示。这是由于此时试件发生断裂,且断裂形态呈现明显的颈缩,与实验结果一致,从而证实了J-C模型参数的准确性。
图 14. 实验结果与数值结果之间的负载-应变曲线比较
4.3.讨论
经过验证的Johnson-Cook本构模型和损伤模型参数可直接应用于冲击载荷作用下海洋管道损伤的模拟。通过收集现有的实验数据或对不同管道材料进行拉伸试验,可以建立Johnson-Cook模型参数数据库。定义材料属性时,选择 Johnson-Cook 塑性和损伤模型有助于自动确定模型内的变形和断裂发生情况。这种选择有助于更真实地表示管道损坏过程。临界损伤阈值的识别是确定管道极限承载能力的基础。扩展这一基础知识,对管道、海底和水流之间相互作用的探索构成了进行参数分析的基础。这些分析有助于开发海洋管道整体动态损伤评估方法。
5、结论
本文对海洋管道常用材料Q235钢进行了光滑圆钢和缺口圆钢的准静态拉伸试验以及动态霍普金森拉伸试验。该研究成功确定了与J-C本构模型和失效模型相关的八个参数,表征了Q235钢的力学行为。Q235 钢拉伸试验的数值模拟结果证实了 J-C 本构模型和失效模型所提出的八个参数的准确性。模拟和实验结果的载荷-应变曲线之间的密切一致性,加上断裂过程中不同颈缩模式的观察,成为支持 J-C 模型参数准确性的有力证据。研究结果显着增强了我们对 Q235 钢的机械响应和失效行为的理解,特别是在包括动态事件在内的各种负载情况下。这些见解为海洋管道和其他工程结构的设计和评估提供了重要的输入,确保其在动态环境中的可靠性和安全性。