本文摘要:(由ai生成)
本文主要讨论了移动通信中的差错控制技术,特别是CRC和汉明距离的概念。还介绍了奇偶校验的局限性及改进方法,以及FPGA中的数字数据存储方式。此外,还探讨了通信信道中的噪声类型和差错类型,并建议学生通过编程实现CRC的寄存器架构以加深理解。文章强调了在给定信息序列时计算CRC结果的重要性,并鼓励学生从简单到复杂地不断学习和成长。
第六章的内容在《移动通信》课程中也有涉及,穿插着学习能够加深记忆。我花了好长时间的讲解CRC的寄存器架构,总算让大部分同学记住了,优秀的同学后面还会通过编程来实现。只有这样教学才能做到教学做结合(老师教的确实辛苦)。从简单入手到坚持不懈然后成长成优秀的电子工程师。
CRC多项式的计算过程不要求掌握,但是当给出一串信息序列,需要能够计算出CRC的结果,这才能算真正的掌握。BCH码和RS码有什么差异呢?汉明距离是什么?课上让大家回顾了多种调制方式的星座图,也用了16QAM这个多进制调制的例子来说明欧氏距离和汉明距离的差别,别搞混淆了哦。汉明距离如何计算呢?这是重点知识!
传输差错—通过通信信道后接收的数据与发送数据不一致。差错控制—检查是否出现差错以及如何纠正差错。
通信信道的噪声分为两类:热噪声和冲击噪声。其中, 热噪声引起的差错是随机差错,或随机错; 冲击噪声引起的差错是突发差错,或突发错,引起突发差错的位长称为突发长度。
在通信过程中产生的传输差错,是由随机差错与突发差错共同构成的。
奇偶校验!
奇偶校验是一种基于字符的差错检测方法,适合于异步通讯。
发送端将待发送的数据划分为字符的集 合,在每一个要传输的字符(信息码)的后面附加一个比特的校验信息(称为监督码),使得信息码连同监督码在一起的1个数为奇数(奇校验)或偶数(偶校验)。
接收端根据这一规则检测传输过程中是否有错。奇偶校验的监督码只有1位,并且只能检测出奇数个错误,但在数据通信过程中出现奇数个错误的概率远大于偶数个错误。它的最大缺点就是没有办法检测出偶数个错误,为避免这一缺点,引入方阵(两维)奇偶校验方法。
奇偶校验主要用于计算机内部的数据传送和I/O设备中。