首页/文章/ 详情

《Mechanics of Solid Polymers》2.3.1~2材料模型验证

14天前浏览457

2.3 材料模型验证的力学测试

       在前面的部分介绍了大量的实验测试,可以用来量化聚合物的机械响应,但是这些测试的结果也可以作为选择和校准不同材料模型的来源。关于材料模型校准的实际方面将在第9章中更详细地讨论。
        在许多情况下,特别是在工业环境中,材料模型校准通常是材料建模工作的最后一步,之后校准过的材料模型被 插入有限元输入文件中。这种方法很诱人,因为最终目标通常是对产品或设计进行有限元分析,或者指导设计优化。只要有限元网格足够精细,有限元求解器的准确性通常是非常好的,但是产品级有限元结果的准确性并不保证,除非使用了合适且准确的材料模型。因此,通常建议通过将基于所选和校准的材料模型的有限元预测与未用于材料模型校准的一组实验数据进行比较来验证校准的材料模型。这组新的实验数据是验证测试结果。通常建议以类似的加载模式或一般的多轴加载模式进行验证测试。有时,即使测试样品中的变形状态是不均匀的,实验结果也可以用于材料模型的校准和验证。如果变形状态是不均匀的,那么可以使用逆校准来校准所选的材料模型。逆材料模型校准是一种技术,在该技术中,对实际测试进行有限元模拟,并将该测试的结果迭代地用作模型校准的一部分。作为材料模型验证的一部分执行的典型步骤如图2.48所示。

图2.48 材料模型验证包括多个步骤:校准、多轴测试和验证仿真

2.3.1材料模型验证

计算机仿真模型通常被用作产品设计、问题解决的重要步骤,并作为提供过程洞察的工具。因此,确保仿真模型经过验证是非常重要的,以确保仿真结果如预期般准确。材料模型验证是一种用于描述材料本构方程正确实现的过程。这通常包括代码审查和检查模型(来自不同解决方案方案和实现的预测)。大多数情况下,这一步骤由有限元求解器提供商或材料模型提供商执行。如果您正在实现自己的材料模型,那么您应该非常小心地执行这一步骤。材料模型验证是一种用于确保模型足够准确地捕捉真实材料响应的过程。通常,验证仅限于一定范围的温度和应变率。

材料模型验证:“你是否使用了正确的材料模型?”材料模型验证:“材料模型是否被正确实施?”

以下各节提供了一些常见的实验测试,可用于材料模型的验证。

2.3.2 小冲击试验

图2.49 小冲击夹具的照片, 展示了小冲击夹具的示意图

        小冲击试验是一种实验技术,可用于检验热塑性和弹性材料的双向弯曲响应。实验方法的细节如图2.49所示,并且在ASTM标准F2183 [26]中也有描述。在这个测试中,将直径为6.4毫米、厚度为0.5毫米的薄圆柱试样放入钢制夹具中,然后使用一个半球形冲头施加载荷,驱动试样以类似双向拉伸的加载模式变形,见图2.50。在试验过程中,测量冲头的力-位移响应。这个测试的主要好处是可以在小样品上进行,比如从回收的医疗器械中提取的样品[27-29]。由于实验测试易于执行,并且引入了材料的多轴应力和应变状态,因此它也是一个有用的材料模型验证测试。在2.3节中对验证测试进行了更详细的讨论。小冲击试验易于使用有限元仿真进行分析。图2.50显示了一个小冲击试样的轴对称有限元网格示例。小冲击试验的主要挑战是摩擦的强烈影响。图2.51显示了一个案例研究的结果,其中检查了三个摩擦系数(0、0.1和0.2)。图表显示,在大变形时,力-位移响应可以相当强烈地依赖于摩擦系数。下表显示了摩擦系数对最大应力、最大应变和最小试样厚度的影响。

图2.50 由半球形冲头加载的小冲击试样的有限元网格示意图

图 2.51摩擦对小冲击结果的影响有限元研究结果

        这些结果清楚地表明,在大位移情况下,试件中的所有应力和应变场都明显依赖于摩擦系数。因此,为了有效地利用这种多轴试验,重要的是要对试件与夹具中的钢材之间的摩擦系数有一个良好的理解。

来源:ABAQUS仿真世界
材料试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-05-19
最近编辑:14天前
yunduan082
硕士 | 仿真主任工程... Abaqus仿真世界
获赞 126粉丝 139文章 246课程 0
点赞
收藏

作者推荐

未登录
还没有评论

课程
培训
服务
行家

VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈