《Mechanics of Solid Polymers》2.2.10霍普金森压杆测试技术
2.2.10 其他常见的机械测试模式
常用于确定聚合物应力-应变响应的其他加载模式如图2.46所示。这些加载模式包括扭转、复合拉伸-扭转、双向拉伸、三点和四点弯曲以及受限压缩。为了表征聚合物材料的行为,不必使用所有这些不同的实验测试。根据使用的材料模型,有时建议进行单轴加载测试和至少一种其他加载模式的测试。对于聚合物泡沫材料,由于其可压缩性,进行受限压缩或三轴压缩试验也很重要,以实现将剪切响应从体积响应中分离出来。
图 2.46 常用于确定聚合物应力-应变响应的不同加载模式
材料模型校准所需的不同测试数量和加载模式类型取决于模型预测的精度要求和所选择的材料模型。有趣的是,基于微观力学原理的高级材料模型(见第8章)通常需要较少的加载模式进行表征,相比之下,纯粹现象学模型通常需要许多不同的加载模式进行准确可靠的校准。另一方面,高级微观力学模型通常还需要不同加载速率和温度的实验数据进行校准。
2.2.11 失效模型校准测试
实验测试对于所有类型的聚合物的失效模型校准同样至关重要。这包括断裂力学测试、疲劳测试和损伤力学测试。一般来说,失效测试可以分为连续体级别的失效特性测试和断裂力学测试两类。连续体级别测试基于本章前几节讨论过的确切测试技术。这些测试根据所需的失效模型类型,可以是单调加载或循环加载至失效。
断裂力学测试对于弹性体和热塑性体材料有不同的执行方式。对于弹性体,已经开发了许多测试几何形状,这些形状对于确定弹性体或橡胶的临界撕裂能量特别有用。图2.47显示了几种常见的用于此目的的测试几何形状。裤子撕裂试样和C型撕裂试样是用于确定橡胶的撕裂强度的特定试样几何形状,而紧凑张力试样已经开发用于测量塑料材料的断裂韧性。
图2.47 常用于确定聚合物失效响应的不同加载模式