本文摘要:(由ai生成)
本文以水平管道非满管流为例,详细探讨了水平非满管流的特性和模拟方法。案例中将管道内径增大至Φ30mm,长度设为2.1m,并采用六面体结构化网格以精确捕捉液面变化。文中指出,由于水平流动是无压流,主要由水位差形成的重力势能推动,因此管道轴向上的水深会有所不同。计算结果显示,出口处液面最低,上游液位变化不大。通过计算各截面上的等效液位,绘制的降水线揭示了液位沿管道轴向的变化趋势。结果表明,若管道长度或水流量增加,液位可能触及管顶。
正文共:511字 3图 预计阅读时间:2分钟
1 前言
之前我们写过一个水平管道非满管流的案例(“一个管道气液两相流模拟“2023.1.15推文),感兴趣的读者可以搜索历史消息查看。该流动实际上包含有压流动(垂直满管流)和平坡明渠流动(水平非满管流),对于水平非满管流,由于坡度i=0,因此不能形成均匀流,即没有正常水深线。水平管道轴向上的水深是不同的,这个很好理解,水的流动一定来自于压差,水平流动又是无压流,因此只有水位差形成重力势能来推动液体流动。今天,我们更加详细地说明一下这个问题。
2 建模与网格
本案例我们将水平管道内径增大至Φ30mm,长度为2.1m。划分多面体网格,对于本案例,水平管道采用六面体结构化网格是一个更好的选择,可以更好地捕捉轴向的液面变化。
3 边界条件与求解设置
边界条件和求解设置,请读者参考之前的案例,这里不再冗述。
4 计算结果
先看一下轴向上的管道液面截图,在出口处的液面最低,上游的液面目视变化不明显。
采用之前案例的液位计算方法,我们将各个截面上的等效液位计算出来,在轴向上进行绘制如下(降水线)。可以看出液位从出口往上游先快速增加,后基本呈现线性增加。
由此也可以推断,如果管道长度继续增加,或者水流量继续增加,那么水平起始点的液位将触碰到管顶。