DMTA 设备还能够测量热膨胀系数[ 53 ],这是 IV 型容器的相关信息,因为这些容器包含热膨胀系数差异很大的材料 [ 9 ]。由于衬里和复合结构的热膨胀系数不匹配,温度的剧烈变化会导致严重的热应力,并伴随着多次充放电过程中的内部压力。热应力和内压力的叠加会导致内胆产生微裂纹,进而可能导致储罐失效。然而,参考文献的结果。 [ 31 ]得出的结论是,热膨胀本身在塌陷的发生中并不起重要作用。
机械测试通常用于测量不同材料的机械强度。孙等人。研究了填充材料对聚酰胺 6拉伸和弯曲强度的影响[ 39 ]。研究发现,层状无机组分的添加阻碍了聚合物链段的运动,从而在不影响韧性的情况下提高了拉伸强度、弯曲强度和弯曲模量。梅农等人。研究了氢气暴露对聚合物拉伸强度的影响[ 18 ]。结果发现,聚四氟乙烯和高密度聚乙烯表现相似,在暴露于氢气后杨氏模量增加。尽管在每个 DMTA 的氢暴露下没有观察到 Tg 的增加,但在拉伸强度和模量方面可以更明显地测量到材料的硬化。
还有其他可能的材料测试方法,这些方法在之前的出版物中尚未研究过。冲击试验、热变形温度和维卡试验可能适合检测氢气暴露和温度对聚合物机械性能的影响。不同聚合物的疲劳强度还取决于温度。根据III型和IV型储罐的疲劳对比试验,IV型储罐的疲劳随着温度的升高而增加[ 9 ]。然而,针对不同衬里材料的综合疲劳试验尚未发表。通过上述材料试验进行研究可以弥补这一知识的缺乏。
2.2.3 .聚合物内衬的表面特性
聚合物内衬在复合材料包裹压力容器行业中占据主导地位的主要挑战之一是消除内衬塌陷。综上所述,我们可以得出结论,界面性质对于避免内衬塌陷必须发挥重要作用。从表面开始的损伤过程可能源于衬里与复合基体材料之间的内聚强度较弱[ 10 , 11 ]。粘合性能与聚合物的表面能相关。材料的表面能受表面化学成分的影响。低能表面往往是疏水性的,而高能表面往往是亲水性的。例如,高密度聚乙烯(IV 型衬垫最常见的材料之一)是一种表面能低的非极性聚合物,因此导致润湿性能较差,并且不与水和粘合剂等极性物质相互作用。54 ]。它还具有大部分无定形结构,这意味着它没有长程有序,这导致相对光滑的表面和较低的表面能。所有这些因素都会导致内衬/外包装界面处的粘合质量较差[ 55 ]。相反,聚酰胺具有相对较高的表面能,因为它们含有本质上是极性的酰胺基团。一般来说,它们还具有高结晶度,这也提高了粘合性能和机械性能。这使得聚合物和粘合剂之间的结合更加牢固。然而,在某些排放参数下,带有聚酰胺内衬的复合材料包裹压力容器仍然会发生内衬塌陷[ 32 ]。因此,提高表面能不仅对于疏水性聚合物很重要,对于亲水性聚合物也很重要。
键合技术需要基材表面具有良好的润湿性。为了增强界面性能,需要采用表面处理技术。应用于塑料的表面改性工艺可以增加表面粗糙度和粘合面积,增加表面能并去除表面杂质[ 54 , 56 ]。多种方法包括物理和化学表面处理。物理处理使表面机械粗糙化,为机械联锁创造更大的空间。它们是低成本的解决方案,但对于需要化学表面改性的塑料来说效果不佳。化学方法可以在液相和反应气相中进行(例如火焰和等离子体处理)。由于明显的可持续性问题,法规正在推动制造业不再使用液体化学品进行表面处理。火焰处理通过表面氧化增加聚合物表面的表面能,产生新的极性官能团[ 54 ]。在等离子体处理过程中,极性官能团是通过破坏聚合物中的化学键并与等离子体中的电离气体颗粒形成新的键而产生的。极性官能团可以使表面更加亲水,从而可以增加聚合物的表面能。等离子处理还可以增加[ 55 ]表面粗糙度和润湿性。贝尔切利等人。有效提高了蒙脱土和碳纳米管填料的聚酰胺6基纳米复合材料的表面能,且没有明显的降解[ 57 ]。坤等人。研究了注塑模具型腔的飞秒激光处理对成型零件机械性能的影响[ 58 ]。刀具的表面结构改变了填充过程和冷却效率。研究指出,模具表面的微观结构可以对聚合物零件的机械性能产生积极的影响。这一结果也可用于IV型压力容器内衬的生产。
3 .聚乙烯和聚酰胺作为内衬材料的特点
聚乙烯和聚酰胺由于其高抗渗透性和低廉的价格被认为是最适合作为衬里材料的两种候选材料。它们都具有非晶区和结晶区,这使得渗透性能变得复杂。金杉等人。将微晶描述为均匀分布在非晶基质中的势垒[ 59 ]。根据他们的解释,高压氢渗透导致非晶区压缩,从而自由体积缩小,结晶度增加。这导致扩散和渗透系数降低。方等人。创建了分子模型来模拟温度对分子尺度上聚乙烯和聚酰胺渗透性的影响[ 60 ]。聚乙烯和聚酰胺模型详细到单体水平,然后构建了包含结晶和非晶区域的晶胞,并针对能量最小分子排列进行了优化。所得聚乙烯和聚酰胺结构的最终密度值分别为0.83g/cm 3和1.07g/cm 3。此步骤之后,计算不同温度下的自由体积分布。图 14显示,聚乙烯和聚酰胺的自由体积分数随着温度从 263 K 升高到 353 K 而增加。此外,在同等温度水平下,聚乙烯的自由体积分数始终超过聚酰胺。聚乙烯的自由体积分数增加了 5.93%,而聚酰胺仅增加了 2.32%。根据自由体积,可以得出结论,聚乙烯对温度变化更敏感。这些计算还扩展到溶解度系数、扩散系数和渗透系数。溶解度与自由体积负相关,而扩散和渗透与自由体积正相关。
图14。基于分子动力学模型的聚乙烯和聚酰胺在升高温度下的自由体积分数[ 60 ]。
填料可以对结晶聚合物产生积极影响,例如减少自由体积、提高玻璃化转变温度以及由于纳米颗粒的成核效应而提高结晶度。最重要的方面显然是弯曲效应,其中层状填料已被证明是最有效的,特别是当它们垂直于扩散路径良好地分布在聚合物中时[ 39 , 59 ]。取向可以随塑料-层状无机填料复合材料样品的制备方法的不同而变化[ 61 ]。尽管它们对渗透性有显着影响,但关于哪种低渗透性填料最能限制氢扩散并降低聚乙烯和聚酰胺的氢渗透性的研究却很少。填料形态对氢渗透率影响的研究也存在很大差距。研究主要涉及氧气、水蒸气和二氧化碳,因为这些气体是包装行业的主流气体[ 61 , 62 ]。虽然聚合物中最广泛使用的渗透阻隔材料似乎是蒙脱石,但不可忽视的是,其他层状添加剂(如滑石粉或云母)也可以有效,并且除了阻隔作用外,聚合物的整体性能还可以定制为通过添加层状不渗透无机填料[ [63]、 [64]、 [65] ]。然而,经常会检测到相反的行为,因为填料的类型、形状和数量及其与聚合物的相互作用使效果变得复杂[ 39 ]。这些意想不到的现象可以通过聚合物链堆积的团聚、破坏、链流动性降低或基质-填料界面形成不当来解释[ 66 ]。
聚乙烯是一种块状塑料,具有简单的线性聚合物结构,主要由碳和氢原子组成,不含任何高负电性原子(如氧、氮),形成相对非极性的分子结构。聚乙烯的单体见图15 (a)[ 60 ]。氢分子也是非极性的。气体和聚合物缺乏极性相互作用以及非极性性质导致氢在HDPE中的溶解度较低,并且氢通过材料的渗透性有限。不同类型的聚乙烯表现出不同的自由体积分数和广泛的结晶度。藤原等人。重点是定量方法来测量热压板样品在 90 MPa 的氢气暴露后减压过程引起的破坏[ 67 ]。研究了五种类型的聚乙烯,例如高密度聚乙烯(HDPE)、中密度聚乙烯(MDPE)、超高分子量聚乙烯(UHMWPE)、线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE) 。密度的增加导致材料性能的变化。根据透射光数字图像计算减压后样本的破坏水平[ 67 ]。据观察,较高的暴露压力导致更严重的破坏,并且不同聚乙烯样品的结晶度较高,发生的破坏较少。破坏程度的顺序为LDPE>UHMWPE>LLDPE>MDPE>HDPE。由此得出的结论是,在所研究的聚乙烯类型中,HDPE 在高压氢气暴露下最能抵抗裂纹的萌生和扩展。研究还表明,随着压力的增加,结晶度也会增加。从大气条件到 90 MPa,LDPE 的结晶度从 23.27% 上升到 28.69%,HDPE 的结晶度从 52.62% 上升到 57.47%。渗透也遵循相同的顺序,因为它与结晶度相关。我们想强调 50 MPa 和 30 °C 条件下的渗透系数,因为本节后面这些值将用作基准。 LDPE的渗透系数为18.99×10 -16 mol/(m·s·Pa),HDPE的渗透系数为6.76×10 -16 mol/(m·s·Pa),几乎低了3倍。虽然HDPE满足储氢容器的渗透极限,但其机械性能有限,但机械强度对于避免内衬塌陷至关重要。 HDPE 的 T g较低,通常在 -120 °C 至 -80 °C 之间,因此在气态氢储存容器的工作温度(-40 °C 至 +85 °C)下,HDPE 处于橡胶态。这导致机械强度和尺寸稳定性降低,这对于维持储存容器的结构完整性可能存在问题。梅拉等人。对 HDPE 样品进行了拉伸试验,应变率为6 × 10 -4 s -1 [ 68 ]。 HDPE 的屈服应力随温度呈线性下降。 0 °C 时平均屈服强度为 30 MPa,+23 °C 时为 23.5 MPa,+70 °C 时为 9 MPa。这意味着从 0 °C 到 +70 °C 强度会降低 3.5 倍。
图15。(a)聚乙烯的单体; (b)聚酰胺[ 60 ] 聚酰胺,通常称为尼龙,是流行的技术聚合物。它们本质上是极性的,分子结构中含有酰胺基 (CONH)。聚酰胺的单体见图15 (b)[ 60 ]。极性官能团在氮原子和氢原子之间产生电负性差异,表现出强烈的分子间相互作用,这也防止了渗透。与 HDPE 相比,这也有助于形成更有组织的结晶结构。这些紧密堆积的聚合物链为氢分子形成扩散屏障。孙等人。据称,他们是第一个发表关于聚酰胺 6 (PA6) 和带有层状无机成分 (LIC) 填料的 PA6 复合材料作为 IV 型储氢容器的潜在衬里材料的性能的一般研究 [ 39 ]。根据DSC和XRD结果,PA6 的结晶度约为 25%,LIC/PA6 的结晶度约为 18%。解释是,虽然LIC/PA6更容易结晶,但LIC的引入使得晶体生长变得困难。尽管对结晶度有这些负面影响,但LIC 填料的拉伸强度、弯曲强度和弯曲模量得到了改善,因为填料和基体之间有利的界面结构在样品上施加载荷时产生了有效的应力传递。然而,填充的 PA6 的断裂伸长率降低了 10% ,这表明韧性也较低。一般来说,聚酰胺具有许多理想的特性,但其用作储氢容器的内衬材料(操作温度在 -40 °C 至 +85 °C 之间变化)可能会出现问题。 PA6 的T g相对较低,通常在 +50 至 +60 °C 左右,仍低于最高工作温度。然而,PA6 在大部分工作温度范围内都处于玻璃态。从内衬塌陷的侧面看,减压与冷却相关,因此 PA6 在内衬塌陷期间很可能在其玻璃态下承受压力梯度的负载。这使得 PA6 成为比 HDPE 更耐用的衬里选择。添加填料甚至可以提高 T g ,使聚酰胺更适合这项任务。令人惊讶的是,Sun 等人的DMTA测试。在 LIC/PA6 的情况下,显示出略低的 Tg ,这表明分子之间的极性效应被填料周末化了 [ 39 ]。单等人。研究拉伸性能PA6 在+15 °C 和+80 °C 之间的不同温度下的变化[ 69 ]。屈服应力几乎随温度呈线性下降。应变速率为3.3×10 -4 s -1的测试结果显示,+15℃时的屈服应力为71MPa,+23℃时的屈服应力为57MPa,+65℃时的屈服应力为35MPa。这些结果反映了比 HDPE 更高的机械强度,约为 3 倍。这一假设将使聚酰胺成为衬里的最终选择,但我们的目的是强调导致衬里塌陷的因素的复杂性,从而导致渗透性问题。 Sun 等人测量了 PA6 的氢渗透率。结果表明,PA6在50 MPa、25 ℃条件下的渗透系数为1.4×10 -16 mol/(m·s·Pa)。该值几乎比HDPE低5倍。层状无机组分的引入进一步降低了渗透系数,降至3.2×10 -17 mol/(m·s·Pa)。问题是,是否存在最低渗透率要求,以避免内衬塌陷并仍然最大限度地减少氢渗透。如前所述,对于相同尺寸的较低渗透性衬管,衬管塌陷的程度可能更加严重,因为排空速率和气体扩散之间的动力学差异越大,导致穿过样品厚度的压力梯度越大。 还必须提及样品制备方法对氢渗透性的重要性,因为测试样品应反映储存容器的真实状况。藤原等人研究中的标本。 [ 67 ]和Kanesugi等人。 [ 59 ]是热压的,这似乎是一个公平的选择,因为这会导致与滚塑衬里类似的未取向聚合物链。佩平等人。通过压平一块实际容器内衬获得了样品[ 32 ]。同时,Sun等人研究中的标本。 [ 39 ]是注塑成型的,尽管这与任何典型的内衬生产工艺(旋转成型或吹塑成型)不同。问题是晶体区域的大小和数量取决于成型方法,与其他提到的工艺相比,注射成型通常会产生具有更高取向的聚合物链和更高数量的晶体区域[ 70 ]。技术参数也会影响结晶。例如,杨等人。发现在注射成型的情况下,靠近模具壁的结晶度比核心处的结晶度高,并且结晶速率与冷却速率成正比,冷却速率主要由模具温度决定:靠近模具表面存在较高的热梯度。作为导致相变的传热驱动力[ 71 ]。基于对晶体成分的尺寸和数量的定量测量,Kanesugi 等人。创建了一个模型,成功预测了 LDPE、HDPE 和 PA11 的氢渗透,该模型可以在以后的内衬生产技术化过程中提供有用的信息 [ 59 ]。
4 .结论
本文描述了材料特性和操作条件对 IV 型储氢容器内衬塌陷的影响。在阅读了有关材料特性对衬里屈曲影响的各种文献后,已经确定了以下发展方向。
1.
尽管低渗透性使得许多聚乙烯和聚酰胺类型成为衬里材料的常见选择,但热机械性能(例如相对较低的 T g )并不能完全满足填充-排出条件所施加的理想要求。研究不同填充材料对聚乙烯和聚酰胺热机械性能和渗透性的影响至关重要,以获得有关其有效性的一般知识。
2.
衬里和复合材料外包装之间的表面完整性值得怀疑,因为衬里塌陷的存在可能源于不良的粘合质量。因此,需要进行研究来检验表面处理技术对抗内衬塌陷的影响。
3.
需要研究制造选择和技术参数对衬管塌陷的影响,因为这些参数会影响结晶度、渗透率和机械强度。研究应集中于常用的吹塑和滚塑技术。
4.
根据现有的研究可以看出,由于内胆塌陷的内部因素所带来的减压限制,燃料电池的体积消耗应该决定容器的尺寸。为了了解内部因素对整体抗内衬塌陷的综合影响,需要对快速气体减压测试进行广泛的研究,该测试是在具有不同类型聚合物及其表面处理的复合容器代表性样品上进行的。基于此类研究,可以为氢气系统设计提供技术指南。本文来源:
A review on the factors of liner collapse in type IV hydrogen storage vessels