移动应用的车载储氢是全球工业向氢技术转型的关键领域。该研究工作概述了氢燃料电池汽车的原理,重点关注广泛的车载储氢技术。在这项工作中,特别审查了IV 型复合材料压力容器。对聚合物内衬的关键挑战进行了深入研究,内衬塌陷被确定为 IV 型容器的严重故障。对导致内衬塌陷的不同因素进行了分类,并对相关材料性能(如渗透性、物理特性和表面性能)进行了更详细的解释,为进一步研究高阻隔、耐用的聚合物内衬材料奠定了基础。
关键词
复合材料压力容器、
衬管塌陷、
氢渗透、
阻隔性、
聚合物纳米复合材料、
表面处理
尽管一些政府和企业在氢燃料道路交通方面投入巨资,但也有一些人对燃料电池电动汽车持批评态度,他们认为氢不太可能在道路交通中发挥主要作用。根据他们的观点,电池驱动的汽车及其充电基础设施应该加速发展。他们还承认,绿色氢应该用于重工业和航空运输,而不是公路运输[ 24 , 25 ]。无论氢燃料道路运输的未来如何,还有许多其他应用需要轻质复合材料包裹压力容器,例如铁路、海运和航空[ 10 ]。此外,由于可用的管道基础设施非常有限,氢气是通过长管拖车从生产过程中供应到加氢站的。配备钢质 20 MPa I 型储罐的典型长管拖车的有效负载仅限于约 250 公斤。另一方面,具有 III 型或 IV 型配置的长管拖车可以输送超过 1000 公斤的氢气 [ 10 ]。欧洲已经有一些成功的项目旨在开发复合管拖车,例如由 Air Products 领导的 HyTEC(欧洲城市氢运输)计划 [ 26 ]。正在进行的 ROAD TRHYP(公路拖车设计 - 使用 V 型热塑性管和轻型复合结构进行氢运输)项目旨在开发 V 型气瓶,由 L AIR LIQUIDE SA 协调 [ 27 ]。此外,加氢站还受益于 IV 型钢瓶,其中高压加氢(通常在 90-100 MPa 下进行)在大量加氢循环时需要缓冲或级联存储系统。疲劳裂纹的发展是压力循环深度和总循环次数的一个因素,它限制了 I 型、II 型和 III 型容器中金属的生命周期。然而,由于聚合物内衬,IV 型容器仅受到复合外包装层疲劳寿命的限制 [ 10 ]。
IV型氢气压力容器的制造过程与压缩天然气瓶类似。它由衬垫成型、缠绕、完全固化、压力测试、泄漏测试组成。衬里可以通过三种方式制造:吹塑、滚塑、焊接。吹塑成型用于大批量生产,滚塑成型是一种替代成型工艺,可在小批量生产时酌情选择,以实现较低的成本[28]。衬里通常由聚乙烯或聚酰胺[11,13]。为了将 IV 型容器连接到存储系统的管道,聚合物内衬与金属端凸台一起制造,两端各一个。金属零件大多采用铝合金6061或7060,以及316L inox钢或铬钼钢[11]。气缸生产中使用的复合材料制造工艺是纤维缠绕。缠绕方法在成熟的湿法缠绕、丝束缠绕和胶带缠绕之间有所不同[10]。设备布局因适用的控制轴数量、心轴配置、纤维材料、基体材料和浸渍方法而异。图 4显示了一台 CNC 控制的纤维缠绕机,配有可选的浸渍浴和自动纤维架 [29]。
图4 . CNC控制的纤维缠绕机[ 29 ]。
纤维可以是玄武岩纤维、玻璃纤维、芳纶纤维或碳纤维。对于 35 MPa 及以上的应用,碳纤维是首选。可以使用热固性材料(例如环氧树脂、乙烯基酯等)和热塑性材料[例如聚醚醚酮(PEEK)、聚酰胺(PA)、聚苯硫醚(PPS)][ 10 , 30 ]。热固性树脂因其良好的机械性能、稳定性以及与纤维缠绕工艺的相容性而更为常见。尽管热固性复合材料已经很成熟,但纤维增强热塑性塑料由于其更长的保质期、更短的生产时间和回收潜力而比热固性塑料获得了发展动力。缠绕后,将整个容器放入精确控制的烘箱中来固化复合材料[ 11 ]。热塑性树脂的主要缺点是浸渍更困难,因为与热固性树脂相比,它们的粘度更高。为了克服这个问题,将浸渍步骤分开,并制备预浸渍的丝束浸料或带。尽管预浸料产品具有低空隙率和高纤维体积分数,并且市场上有不同的热塑性塑料配置(例如PEEK 和 PA 基体中的碳纤维、芳纶或玻璃纤维)[ 10 ],但纤维的生产具有挑战性增强热塑性塑料使热固性纤维浸渍成为更具成本效益的解决方案。另一方面,在环境可持续生产驱动的项目中,部分或全部回收的承诺使热塑性塑料脱颖而出[ 10 ]。如前所述,传统的 IV 型气瓶使用某种热塑性内衬,并用某种纤维增强热固性复合材料包裹。这种混合系统的问题是内衬/外包装界面处的疲劳性能较差,这是由难以粘合在一起的不同材料造成的。当复合材料外包装的衬里和基体都采用相同的热塑性塑料时,V 型结构可以消除这个问题。一个很好的例子是来自英国的一个名为 DuraStor 的财团,该财团旨在制造更轻、成本更低且更耐用的全热塑性复合材料存储容器替代品 [ 10 ]。在该项目中,研究了滚塑聚甲醛(POM) 内衬和碳纤维/聚甲醛复合外包装的配置。使用预浸渍单向碳纤维增强 POM 带。法国的倡议项目 HYPE 开发了包裹有聚酰胺基质/碳纤维复合材料的压缩氢气容器,商标为 Carbostamp [ 10 ]。
1.4 . IV 型储罐内衬塌陷
聚合物内衬的屈曲或塌陷现象是石油和天然气管道中的一个众所周知的问题。它在气体快速减压时出现在高压储气容器或管道的壁上。图 5显示,塌陷由衬里的分离和显着变形组成 [ 31 ]。在填充/排空循环期间,由于温度和气压变化,衬里承受各种性质的应力。为了更好地理解其原因,许多文献已经讨论了这种现象[ 9, [31], [32], [33] ]。渗透是主要原因之一:气体积聚在内衬和外壁之间的区域,在内衬的外表面施加压力,当容器快速排空时(例如在维护时),会导致衬里变形大[ 33 ]。许多研究[ 11、 [31]、 [32]、 [33] ]证实,这些情况会导致IV型容器在快速气体减压过程中发生内衬屈曲。变形的发生取决于减压流量、气缸内的最大压力以及排空结束时气缸内保持的压力(中间压力)[ 11 ]。
DMTA 设备还能够测量热膨胀系数[ 53 ],这是 IV 型容器的相关信息,因为这些容器包含热膨胀系数差异很大的材料 [ 9 ]。由于衬里和复合结构的热膨胀系数不匹配,温度的剧烈变化会导致严重的热应力,并伴随着多次充放电过程中的内部压力。热应力和内压力的叠加会导致内胆产生微裂纹,进而可能导致储罐失效。然而,参考文献的结果。 [ 31 ]得出的结论是,热膨胀本身在塌陷的发生中并不起重要作用。
机械测试通常用于测量不同材料的机械强度。孙等人。研究了填充材料对聚酰胺 6拉伸和弯曲强度的影响[ 39 ]。研究发现,层状无机组分的添加阻碍了聚合物链段的运动,从而在不影响韧性的情况下提高了拉伸强度、弯曲强度和弯曲模量。梅农等人。研究了氢气暴露对聚合物拉伸强度的影响[ 18 ]。结果发现,聚四氟乙烯和高密度聚乙烯表现相似,在暴露于氢气后杨氏模量增加。尽管在每个 DMTA 的氢暴露下没有观察到 Tg 的增加,但在拉伸强度和模量方面可以更明显地测量到材料的硬化。
还有其他可能的材料测试方法,这些方法在之前的出版物中尚未研究过。冲击试验、热变形温度和维卡试验可能适合检测氢气暴露和温度对聚合物机械性能的影响。不同聚合物的疲劳强度还取决于温度。根据III型和IV型储罐的疲劳对比试验,IV型储罐的疲劳随着温度的升高而增加[ 9 ]。然而,针对不同衬里材料的综合疲劳试验尚未发表。通过上述材料试验进行研究可以弥补这一知识的缺乏。
2.2.3 .聚合物内衬的表面特性
聚合物内衬在复合材料包裹压力容器行业中占据主导地位的主要挑战之一是消除内衬塌陷。综上所述,我们可以得出结论,界面性质对于避免内衬塌陷必须发挥重要作用。从表面开始的损伤过程可能源于衬里与复合基体材料之间的内聚强度较弱[ 10 , 11 ]。粘合性能与聚合物的表面能相关。材料的表面能受表面化学成分的影响。低能表面往往是疏水性的,而高能表面往往是亲水性的。例如,高密度聚乙烯(IV 型衬垫最常见的材料之一)是一种表面能低的非极性聚合物,因此导致润湿性能较差,并且不与水和粘合剂等极性物质相互作用。54 ]。它还具有大部分无定形结构,这意味着它没有长程有序,这导致相对光滑的表面和较低的表面能。所有这些因素都会导致内衬/外包装界面处的粘合质量较差[ 55 ]。相反,聚酰胺具有相对较高的表面能,因为它们含有本质上是极性的酰胺基团。一般来说,它们还具有高结晶度,这也提高了粘合性能和机械性能。这使得聚合物和粘合剂之间的结合更加牢固。然而,在某些排放参数下,带有聚酰胺内衬的复合材料包裹压力容器仍然会发生内衬塌陷[ 32 ]。因此,提高表面能不仅对于疏水性聚合物很重要,对于亲水性聚合物也很重要。
键合技术需要基材表面具有良好的润湿性。为了增强界面性能,需要采用表面处理技术。应用于塑料的表面改性工艺可以增加表面粗糙度和粘合面积,增加表面能并去除表面杂质[ 54 , 56 ]。多种方法包括物理和化学表面处理。物理处理使表面机械粗糙化,为机械联锁创造更大的空间。它们是低成本的解决方案,但对于需要化学表面改性的塑料来说效果不佳。化学方法可以在液相和反应气相中进行(例如火焰和等离子体处理)。由于明显的可持续性问题,法规正在推动制造业不再使用液体化学品进行表面处理。火焰处理通过表面氧化增加聚合物表面的表面能,产生新的极性官能团[ 54 ]。在等离子体处理过程中,极性官能团是通过破坏聚合物中的化学键并与等离子体中的电离气体颗粒形成新的键而产生的。极性官能团可以使表面更加亲水,从而可以增加聚合物的表面能。等离子处理还可以增加[ 55 ]表面粗糙度和润湿性。贝尔切利等人。有效提高了蒙脱土和碳纳米管填料的聚酰胺6基纳米复合材料的表面能,且没有明显的降解[ 57 ]。坤等人。研究了注塑模具型腔的飞秒激光处理对成型零件机械性能的影响[ 58 ]。刀具的表面结构改变了填充过程和冷却效率。研究指出,模具表面的微观结构可以对聚合物零件的机械性能产生积极的影响。这一结果也可用于IV型压力容器内衬的生产。
聚乙烯和聚酰胺由于其高抗渗透性和低廉的价格被认为是最适合作为衬里材料的两种候选材料。它们都具有非晶区和结晶区,这使得渗透性能变得复杂。金杉等人。将微晶描述为均匀分布在非晶基质中的势垒[ 59 ]。根据他们的解释,高压氢渗透导致非晶区压缩,从而自由体积缩小,结晶度增加。这导致扩散和渗透系数降低。方等人。创建了分子模型来模拟温度对分子尺度上聚乙烯和聚酰胺渗透性的影响[ 60 ]。聚乙烯和聚酰胺模型详细到单体水平,然后构建了包含结晶和非晶区域的晶胞,并针对能量最小分子排列进行了优化。所得聚乙烯和聚酰胺结构的最终密度值分别为0.83g/cm 3和1.07g/cm 3。此步骤之后,计算不同温度下的自由体积分布。图 14显示,聚乙烯和聚酰胺的自由体积分数随着温度从 263 K 升高到 353 K 而增加。此外,在同等温度水平下,聚乙烯的自由体积分数始终超过聚酰胺。聚乙烯的自由体积分数增加了 5.93%,而聚酰胺仅增加了 2.32%。根据自由体积,可以得出结论,聚乙烯对温度变化更敏感。这些计算还扩展到溶解度系数、扩散系数和渗透系数。溶解度与自由体积负相关,而扩散和渗透与自由体积正相关。
图14。基于分子动力学模型的聚乙烯和聚酰胺在升高温度下的自由体积分数[ 60 ]。
填料可以对结晶聚合物产生积极影响,例如减少自由体积、提高玻璃化转变温度以及由于纳米颗粒的成核效应而提高结晶度。最重要的方面显然是弯曲效应,其中层状填料已被证明是最有效的,特别是当它们垂直于扩散路径良好地分布在聚合物中时[ 39 , 59 ]。取向可以随塑料-层状无机填料复合材料样品的制备方法的不同而变化[ 61 ]。尽管它们对渗透性有显着影响,但关于哪种低渗透性填料最能限制氢扩散并降低聚乙烯和聚酰胺的氢渗透性的研究却很少。填料形态对氢渗透率影响的研究也存在很大差距。研究主要涉及氧气、水蒸气和二氧化碳,因为这些气体是包装行业的主流气体[ 61 , 62 ]。虽然聚合物中最广泛使用的渗透阻隔材料似乎是蒙脱石,但不可忽视的是,其他层状添加剂(如滑石粉或云母)也可以有效,并且除了阻隔作用外,聚合物的整体性能还可以定制为通过添加层状不渗透无机填料[ [63]、 [64]、 [65] ]。然而,经常会检测到相反的行为,因为填料的类型、形状和数量及其与聚合物的相互作用使效果变得复杂[ 39 ]。这些意想不到的现象可以通过聚合物链堆积的团聚、破坏、链流动性降低或基质-填料界面形成不当来解释[ 66 ]。
聚乙烯是一种块状塑料,具有简单的线性聚合物结构,主要由碳和氢原子组成,不含任何高负电性原子(如氧、氮),形成相对非极性的分子结构。聚乙烯的单体见图15 (a)[ 60 ]。氢分子也是非极性的。气体和聚合物缺乏极性相互作用以及非极性性质导致氢在HDPE中的溶解度较低,并且氢通过材料的渗透性有限。不同类型的聚乙烯表现出不同的自由体积分数和广泛的结晶度。藤原等人。重点是定量方法来测量热压板样品在 90 MPa 的氢气暴露后减压过程引起的破坏[ 67 ]。研究了五种类型的聚乙烯,例如高密度聚乙烯(HDPE)、中密度聚乙烯(MDPE)、超高分子量聚乙烯(UHMWPE)、线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE) 。密度的增加导致材料性能的变化。根据透射光数字图像计算减压后样本的破坏水平[ 67 ]。据观察,较高的暴露压力导致更严重的破坏,并且不同聚乙烯样品的结晶度较高,发生的破坏较少。破坏程度的顺序为LDPE>UHMWPE>LLDPE>MDPE>HDPE。由此得出的结论是,在所研究的聚乙烯类型中,HDPE 在高压氢气暴露下最能抵抗裂纹的萌生和扩展。研究还表明,随着压力的增加,结晶度也会增加。从大气条件到 90 MPa,LDPE 的结晶度从 23.27% 上升到 28.69%,HDPE 的结晶度从 52.62% 上升到 57.47%。渗透也遵循相同的顺序,因为它与结晶度相关。我们想强调 50 MPa 和 30 °C 条件下的渗透系数,因为本节后面这些值将用作基准。 LDPE的渗透系数为18.99×10 -16 mol/(m·s·Pa),HDPE的渗透系数为6.76×10 -16 mol/(m·s·Pa),几乎低了3倍。虽然HDPE满足储氢容器的渗透极限,但其机械性能有限,但机械强度对于避免内衬塌陷至关重要。 HDPE 的 T g较低,通常在 -120 °C 至 -80 °C 之间,因此在气态氢储存容器的工作温度(-40 °C 至 +85 °C)下,HDPE 处于橡胶态。这导致机械强度和尺寸稳定性降低,这对于维持储存容器的结构完整性可能存在问题。梅拉等人。对 HDPE 样品进行了拉伸试验,应变率为6 × 10 -4 s -1 [ 68 ]。 HDPE 的屈服应力随温度呈线性下降。 0 °C 时平均屈服强度为 30 MPa,+23 °C 时为 23.5 MPa,+70 °C 时为 9 MPa。这意味着从 0 °C 到 +70 °C 强度会降低 3.5 倍。
本文描述了材料特性和操作条件对 IV 型储氢容器内衬塌陷的影响。在阅读了有关材料特性对衬里屈曲影响的各种文献后,已经确定了以下发展方向。
1.
尽管低渗透性使得许多聚乙烯和聚酰胺类型成为衬里材料的常见选择,但热机械性能(例如相对较低的 T g )并不能完全满足填充-排出条件所施加的理想要求。研究不同填充材料对聚乙烯和聚酰胺热机械性能和渗透性的影响至关重要,以获得有关其有效性的一般知识。
2.
衬里和复合材料外包装之间的表面完整性值得怀疑,因为衬里塌陷的存在可能源于不良的粘合质量。因此,需要进行研究来检验表面处理技术对抗内衬塌陷的影响。
3.
需要研究制造选择和技术参数对衬管塌陷的影响,因为这些参数会影响结晶度、渗透率和机械强度。研究应集中于常用的吹塑和滚塑技术。
4.
根据现有的研究可以看出,由于内胆塌陷的内部因素所带来的减压限制,燃料电池的体积消耗应该决定容器的尺寸。为了了解内部因素对整体抗内衬塌陷的综合影响,需要对快速气体减压测试进行广泛的研究,该测试是在具有不同类型聚合物及其表面处理的复合容器代表性样品上进行的。基于此类研究,可以为氢气系统设计提供技术指南。本文来源:
A review on the factors of liner collapse in type IV hydrogen storage vessels