首页/文章/ 详情

车身结构疲劳耐久分析就5步!一起学nCode/FEMFAT疲劳耐久分析技术

精品
作者优秀平台推荐
详细信息
文章亮点
作者优秀
优秀教师/意见领袖/博士学历/特邀专家/独家讲师
平台推荐
内容稀缺
7月前浏览9600


导读:汽车作为我们日常生活中非常重要的代步工具,也是由大量金属件构成的。当汽车行驶在道路上时由于路面的不平整,车身结构会受到交变载荷作用,从而产生微裂纹并逐渐扩展。为了保证车身在整个设计生命周期内不发生疲劳破坏,我们需要对车身结构进行疲劳耐久性能评估

评估方法可分为试验法和CAE(Computer Aided Engineering)仿真分析法,实际的项目开发过程中,两种方法相结合使用。在项目开发前期,样车试制前的产品设计阶段,通过CAE仿真分析识别出疲劳耐久性能危险部位并进行迭代优化,直到疲劳耐久性能合格。然后按照优化好的数据进行样车试制,之后进行样车台架试验及试车场道路试验。

一、车身疲劳耐久分析流程

车身疲劳耐久分析流程大致分五步,具体如下:

1、路谱载荷获取

CAE疲劳耐久仿真分析需要提供载荷信息输入,即汽车在道路上行驶时的受力情况。目前普遍做法是利用六分力仪采集轮心力,然后利用多体动力学软件建立整车动力学模型,将采集的轮心载荷分解到与底盘相连的车身硬点位置作为车身疲劳耐久仿真的载荷输入。

通过这种方法得到的载荷信息称为实采路谱载荷。由于实采路谱载荷的采集必须等到试制车辆制造完成后才能进行,为了降低开发成本,缩短开发周期,越来越多的汽车公司开始使用3D虚拟路面技术采集载荷。采用激光扫描设备,对实际路面进行三维扫描和建模,得到虚拟数字路面模型[1]。

然后通过多体动力学分析软件在数字路面上进行整车动力学分析,输出车身硬点的载荷作为车身疲劳耐久仿真的载荷输入。通过这种方法得到的载荷信息称为虚拟路谱载荷。

2、仿真模型建立

利用有限元软件建立车身有限元网格模型及相应的焊点、粘胶、螺栓等连接关系,对各个件赋予相应的材料属性并在与底盘相连的车身硬点位置施加载荷,得到车身疲劳耐久仿真模型。车身疲劳耐久问题一般都属于高周疲劳,目前普遍采用准静态法进行线性应力求解计算,作为后续疲劳耐久计算的输入。  

图2  车身疲劳耐久仿真模型

3、疲劳仿真分析  

通过疲劳仿真分析软件将上一步计算的应力结果和相应的疲劳材料属性相结合,导入路谱载荷并按特定的循环次数进行叠加计算,便可得到相应的疲劳损伤结果。损伤即载荷对材料造成的伤害,最常用的是Miner线性损伤累积法则。根据该损伤法则,零件在外界作用力循环作用下,零件吸收能量达到最大值产生疲劳破坏,若试样加载历史所产生的应力水平为σ1, σ2, …, σi,各应力水平下的疲劳寿命相应为N1,N2,...,Ni,各应力水平下的循环次数相应为n1,n2,...,ni。则Miner线性损伤表达式为:

式中:D为总的损伤量;l为变幅载荷的应力水平等级;ni为第i级载荷的循环次数;Ni为第i级载荷下的疲劳寿命[2]。     

根据miner线性损伤累积法则,如果仿真结果显示某处的总损伤值D≥1,则表明该处将发生疲劳破坏,需要采取相应的优化方案进行优化。         

4、台架疲劳试验         

为了尽早发现问题并进行快速整改验证、减少道路试验失效风险和试验轮次,通常会在道路疲劳试验之前采用24通道整车道路振动模拟试验系统进行台架疲劳试验[3]。24通道在垂向、纵向及侧向上都可以很好地复现路面对整车的激励,可以对车身结构件进行疲劳耐久性能考核。相对于试车场道路疲劳试验,台架疲劳试验在室内进行,不易受外界因素影响,数据一致性及结果重复性好,能够较好地完善验证CAE分析[4],而且能在较短的时间内完成试验,可为项目节省成本和时间,有效提高项目开发效率。

 

图3 24通道台架疲劳试验

5、道路疲劳试验

由于影响疲劳耐久性能的因素很多,仅依靠CAE仿真分析及台架疲劳试验难以把所有的因素都考虑在内,所以最终都要通过实际的道路试验来确保疲劳耐久性能满足使用要求。试验样车在试车场内特定的试验道路上,按照特定的试验规范驾驶来重现汽车在整个设计生命周期内的疲劳损伤。试车场用于疲劳耐久试验的主要道路有:比利时石块路、卵石路、鱼鳞坑路、搓板路、起伏路、摇摆路、破损路、方坑、标准坡道等,通过这些道路能够模拟客户实际使用中的典型路面工况,进而达到考核产品疲劳耐久性能的目的。试验规范的制定是通过采集客户的实际使用数据,然后结合试车场特定耐久性道路,通过调整在不同路面上的车速和循环次数,达到等效客户实际使用时的疲劳损伤。为了缩短试验周期,试车场疲劳耐久试验一般按照4~10倍的系数强化[5],下图为道路疲劳试验的部分典型路面。

 

图4  道路疲劳试验典型路面(图片源自网络)       

试验过程中若出现疲劳失效问题,则要根据具体失效情况进行具体分析及优化,必要时需要在优化的基础上再次进行道路试验,以消除潜在的疲劳失效风险。

二、nCode/FEMFAT疲劳耐久分析应用

nCode/FEMFAT整车疲劳耐久分析被广泛应用于汽车产品的研发阶段。通过对车辆在不同路况、不同工况下的疲劳耐久性进行仿真分析,可以预测车辆在实际使用中可能出现的疲劳损伤,从而在设计阶段就采取相应的优化措施。这不仅可以提高车辆的安全性和可靠性,还可以延长车辆的使用寿命,降低维修成本。

 

同时,nCode/FEMFAT还可以与试验数据相结合,对实际车辆的疲劳耐久性进行验证和评估。通过对比仿真结果和试验结果,可以进一步优化仿真模型和分析方法,提高分析的准确性和可靠性。

2024汽车设计仿真交流月第六期将邀请某主机厂8年疲劳耐久分析资深的工程师林哥说CAE带来《nCode/FEMFAT整车疲劳耐久分析关键技术与应用》线上讲座。具体安排如下:

2024汽车设计仿真(六):nCode/FEMFAT整车疲劳耐久分析关键技术与应用-仿真秀直播

扫码观看直播和回放

参考文献

[1] 孙成智等.基于3D数字路面的整车耐久性能评估方法研究[J].汽车工程,2017.  
[2] 王国军.MSC.Fatigue疲劳分析实例指导教程[M].北京:机械工业出版社,2009.  
[3] 李张银.整车道路模拟与道路试验关联研究[J].汽车零部件,2013.  
[4] 闫跃奇等.乘用车C柱内板开裂分析以及改进措施[J].汽车零部件,2016.  
[5] 王继光.汽车耐久性试验[J].硅谷,2011.  
(完)

来源:仿真秀App
Adams振动疲劳汽车FEMFAT新能源裂纹多体动力学材料NVH试验螺栓RAMSIS
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-22
最近编辑:7月前
仿真圈
技术圈粉 知识付费 学习强国
获赞 10082粉丝 21543文章 3539课程 219
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈