高性能电机设计,不仅仅需要考虑电机本体的精确设计,还需要考虑驱动/控制系统的精确设计,以及二者之间的相互集成、匹配问题和系统优化设计问题。因此,电机设计就需要将精确的电机本体模型和驱动电路、控制算法/代码集成起来,通过高精度系统建模和仿真,精确分析整个电机及驱动/控制系统性能。
目录
IGBT应用及封装设计
IGBT特征化建模和开关特性测试
IGBT寄生参数提取及系统性能分析
IGBT电磁性能分析和传导路径优化
IGBT多物理场耦合特性分析
IGBT热模型提取及系统性能分析
IGBT辐射干扰分析
驱动/控制系统设计
永磁同步电机降阶模型抽取
永磁同步电机降阶模型原理
ECE模型提取流程(永磁同步电机PMSM)
IPM电机ECE模型抽取
矢量控制算法仿真
控制代码自动生成
功能原理
模块构成
应用方案技术指标
应用方案特点
电驱动系统集成化设计
电驱动系统EMI/EMC
电驱动系统热设计
以下内容截取自该篇资料
IGBT特征化建模和开关特性测试
IGBT应用及封装设计用户都会面临一个问题,即如何在设计阶段精确考虑IGBT开关特性对电机驱动电路及系统性能的影响。这就需要对IGBT进行精确建模,从而评估其对系统的影响。ANSYS解决方案可根据供货商提供的datasheet实现特征化IGBT精确建模(包含各种特征参数和特性曲线),并可一键生成IGBT的半桥测试电路和系统仿真模型,高效解决IGBT开关特性测试和系统性能分析问题。
基于Simplorer的IGBT特征化电气、热特性建模
Simplorer一键输出IGBT半桥测试电路
IGBT寄生参数提取及系统性能分析
IGBT封装设计和部分电机驱动系统设计用户都关注一个问题,那就是传导路径的寄生参数对IGBT开关特性和系统性能的影响,这就需要对IGBT封装进行三维建模,通过电磁场仿真,提取其寄生参数并集成到系统设计中。ANSYS解决方案可直接导入IGBT封装的CAD模型,自动进行模型处理、自适应网格剖分和传导网络辨识,并通过电磁场求解输出其原始或降价RLCG矩阵,通过动态链接集成到变流电路或系统设计中,精确分析其开关特性和传导干扰对系统性能的影响。
基于Q3D的IGBT寄生参数提取
Simplorer驱动电路设计(集成IGBT特征化模型,Q3D母排、IGBT寄生参数模型)
永磁同步电机降阶模型原理
将永磁同步电机的电流及转子位置角度进行扫描,在有限元里面进行分析计算,得到永磁电机的转矩跟磁链结果,将这些结果保存在一个数据表中,由于转矩跟磁通结果是经过有限元计算得到的,因此数据表的精度非常高。若将这个数据表放到控制系统仿真当中,则计算结果非常快,只需在里面查表就可得到电机的电磁性能。
在Maxwell有限元场计算中,有限元模型对电流和转子位置角扫描,扫描后得到的有限元结果通过降阶模型保存在数据表中形成ECE模型,可将ECE模型直接在Simplorer(Twin-Builder)进行分析计算,也可以将ECE模型送到控制当中进行高级控制系统仿真。
由于抽取的ECE结果是基于有限元计算得到的,因此ECE结果精度非常高,与有限元结果几乎一样。
ECE与FEA结果对比
ECE模型又称ROM降阶模型、状态空间模型,它是基于表格的电路模型,表格参数来源于预先的有限元计算结果。ECE模型可用于控制电路分析、系统分析(TwinBuilder/Simplorer)、HIL分析(ETAS,NI)。它具有模型计算速度快,精度高的优点。模型精度与扫描密度有关,ECE模型暂不支持涡流及磁滞模型。