图1-1 BEV销售预测(预估)
图2-1.绕组概念的变化
图2-2 .填充因子改进的历史记录
图2-3导线类型的性能发展历史
3.1 绝缘和热量产生
图3-1.导体尺寸和涂层厚度的关系
3.2 绝缘性能
公式:式1 V=163×√2×(2×厚度/介电常数)0.46
V:局部放电启动电压(Vp)
εr:绝缘膜的介电常数
t:绝缘膜厚度(µm)
图片3-2-1.与填充因子相比的局部放电值
图3-2-2绕组之间的电场
3.3 冷却性能
图3-3-1与PDIV相比的传热系数
4.1 低介电常数绕组的开发
4.2 高散热结构设计
图4-1.SEI概念草图(剖面图)
4.3 改善权衡关系
图4-3-1.该概念设计改善了传热系数
图5-1传统设计与我们的概念设计之间的温度比较
图5-2不同设置之间的温度比较(模拟)
5.1 首次独立测试
图5-3温度对比试验(来源:FEV)
图5-4温度测量比较(来源:FEV)
最大扭矩时的温度分布
磁通线分布比较
图6-5.导体形状横截面比较
图7-1.性能和尺寸比较
图片8-1.材料投资比较表
图8-2.二氧化碳排放对比表
来源
1. 图片1-1:IHS数据
※ 2030年的数据是参照前一年增长率计算的。
2. 图片5-3,图片5-4:FEV集团
作者
Dr. Kazuhiro Ikeda [= Author and Speaker];
Sumitomo Electric (SEI Automotive Europe Ltd.), Wiesbaden,Germany
Masaki Tsuda [= Author];, Shintaro Morino, [= Co-author]; Kanzo
Ishihara [= Co-author]; Yusuke Mitsugi [= Co-author]
Sumitomo Electric Industries, Yokkaichi, Japan Volker Uwe Strueken; [= Co-author]
SEWS-CE, Wolfsburg,Germany
References
1. K. Oshiro, S. Fujimori, T. Hasegawa, O. Akashi, “Implications of near-term mitigation actions for mid-century energy investments in Asia,” Proceedings of JSCE-G(environment), Vol.76, No.5, I_243-I_252, 2020
2. F. Sano, K. Akimoto, T. Homma, K. Tokushige, “Evaluations on the Japan’s Greenhouse Gas Emission Reduction Target for 2030,” Journal of Japan Soci ety of Energy and Resources, Vol.37, No.1, 51-60, 2015
3. Rahman K , Patel N, Ward T, Nagashima J, Caricchi F, Crescimbini F ,“Application of Direct Drive Wheel Motor for Fuel Cell Electric and Hybrid Electric Vehicle Propulsion System,” Conference Record of the IEEE Industry Applications Conference, 39th, Vol.3, pp.1420-1426, 2004
4. E. Kimura, M. Niki, “2 Motor Hybrid Technology – e:HEV Evolution and Expansion,” Journal of Society of Automotive Engineers of Japan, Vol.75, pp 36-43, 2021-6
5. K. Uemura, H. Yoshida, “Development of High Performance e-Axle,” Journal of Society of Automotive Engineers of Japan, Vol.75, pp 54-59, 2021-12
6. J. Todate, “Various Problems and Solutions for the Spread of Environmental Vehicles and Future Prospects.” Journal of Society of Automotive Engineers of Japan, Vol.76, pp 20-27, 2022-1
7. K. Akatsu, “Future Development in Tration Motor and Inverter for EV/HV,” Journal of Society of Automotive Engineers of Japan, Vol.76, pp 46-53, 2022-6
8. Y. Tsuchiya, T. Okouchi, A. Takehara, H. Aihara, “Development of New Motor for High Powered HEV and PHEV.” Journal of Society of Automotive Engineers of Japan, Vol.76, pp 54-59, 2022-6
9. R. Kaneko, T. Nishikawa, K. Azusawa, “Low Relative Permittivity of Magnet Wire Insulation Coating for HEV Motor,” Honda R&D Technical Review, Vol.32,No.2, pp 125-131, 2020-10
10. A. Sato, S. Iiduka, K. Kimura, “Magnet Wires for Driving Motors in Electric Vehicles,” SEI Technical Review, No.90, pp.17-21, 2020
11. A. Hatanaka, T. Tokuyama, J. Kusukawa, T. Seki, K. Ohshima, “High Volt age and High Power Density Technologies for Inverter in Vehicle,” Transactions of the Society of Automotive Engineers of Japan, Inc., Vol.51, No.6, pp 1050-1055, 2020
12. “Influence to Insulation in case of Operating Common Motor by 400V Class Invertor.” Electrical Construction Engineering, pp.1-3, 1995
13. K. Tomizawa, M. Shimada, K. Ikeda, D. Mutou, K. Ohshima, “High Voltage and High Power Density Technologies for Inverter in Vehicle,” Transactions of the Society of Automotive Engineers of Japan, Inc., Vol.51, No.6, pp 1050-1055, 2020
14. M. Mima, T. Narita, H. Miyake, Y. Tanaka, M. Kozako, M. Hikita, “Influence of Space Charge Accumulation by Pre-stress on Partial Discharge Inception Voltage,” IEEJ Transactions on Fundamentals and Materials, Vol.140, No.5, pp 276-284, 2020