首页/文章/ 详情

雪花凝固过程晶体生长模型分享

6月前浏览7278



北京冬奥会:一朵雪花

本文分享一朵雪花生长过程COMSOL偏微分方程模拟,这是曾经自己做枝晶模拟的学习笔记,雪花凝固模拟过程。

采用COMSOL软件的数学模块中的一般形式偏微分方程来自定义相场模型方程,相场模型偏微分方程包括:(1)相场方程,φ是相场序参数,φ=1表示固体,φ=0表示液体,0<φ<1表示两相之间的界面,界面被认为是扩散层,厚度非常小。(2)温度场方程,表示无量纲温度,系统中水凝固成雪花的驱动力是温度过冷度。


偏微分方程中,变量分别为
其中,τ-模型参数,弛豫时间;β-相场模型参数;η-相场模型参数;μ-各向异性强度;a0-不同晶格各向异性模数,其中密排六方为6,体心立方为4;θ0-方位角;θ-界面法向与x轴的夹角;δ-界面宽度;Tm-熔点温度;T0-初始温度;F-相变潜热。

雪花凝固相场模拟通过COMSOL软件实现,采用数学模块里面的一般形式偏微分方程,设置两个因变量:相场序参数theta=φ和无量纲温度场U。

根据前面基本理论公式,设定参数值并赋值

设定一个阶跃函数,主要用于在计算域内设定初始值,在某个区域形成一个凝固的核心点,该区域内相序参数φ=1,区域外φ=0,界面上存在一个过渡区。

根据前面提到的变量表达式,设定变量

建立几何模型,边长为9的正方形,网格为物理场控制,软件默认划分。

根据前面提到的两个偏微分方程设定两个因变量theta和U

根据软件内部设定的数学公式形式,把前面的两个偏微分方程转换成与内部公式相同形式,并把相应的系数填入模型中

利用前面设定的阶跃函数设定初始值。这里分别计算了两种情况:(1)正方形中心设定凝固核心;(2)在正方形下边中间设定凝固核心。
正方形中心设定凝固核心

在正方形下边中间设定凝固核心

设定计算时间和步长,开始计算

模拟结果


这个模型中,各向异性参数由以下公式表示,其中,μ-各向异性强度;a0-不同晶格各向异性模数,其中密排六方为6,体心立方为4;θ0-方位角;θ-界面法线与x轴的夹角;δ-界面宽度。

来源:锂想生活
Comsol理论控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-05-11
最近编辑:6月前
堃博士
博士 签名征集中
获赞 95粉丝 119文章 367课程 0
点赞
收藏
作者推荐

锂电池四种内短路类型模拟对比

本文摘要:(由ai生成)本文研究了电池内短路的四种类型对电池温度和电压的影响,利用有限元模拟揭示了其产热和温升特性。铝-负极涂层内短路加热作用最强,而正极-铜内短路较弱。文中介绍了使用COMSOL建立的电池短路模型,该模型考虑了电化学反应及热量产生与消散。模拟结果详细分析了不同短路情况下的电池电压下降和温度分布。文章还概述了模型建立过程,并邀请读者购买完整的模型源文件。电池内短路是指电池单体正负极材料由于隔膜失效而直接接触的情况,同时伴随着产热现象的发生。内短路通常包含四种形式,如图 1所示,分别为:①正极涂层-负极涂层类型内短路;②正极集流体-负极涂层类型内短 路;③正极-负极集流体类型内短路;④负极集流体-正极集流体类型内短路。图1 电池中锂枝晶导致的四种内短路类型表1 四种内短路类型对比 图2 四种短路类型产热和温升对比 1) 正极涂层-负极涂层内短路由于电池正极和负极材料的导电能力均显著低于金属材料,所以正极-负极导电能力是四种内短路类型中最差的,其产热能力很低。同时,由于电池正极材料和负极材料的导热能力也都显著低于金属材料,所以正极-负极内短路的散热能力也很差。虽然正极-负极内短路的散热能力很差,但由于其产热能力很低,所以总体上,正极-负极内短路对电池的加热(温升)作用较弱。 2) 正极集流体铝-负极涂层内短路负极材料的导电能力虽远低于金属材料,但依然显著高于正极材料。因此,铝-负极内短路的导电性能虽然差于铝-铜内短路,但是高于正极-负极内短路和正极铜内短路,其产热能力较高。负极材料的导热能力远低于金属材料,且铝的导热能力低于铜,导致铝-负极内短路的整体散热能力较差。因为铝-负极内短路的产热能力较高,且散热能力较差,所以铝-负极内短路对电池的加热作用很强,是四种类型内短路中最高的。3) 正极涂层-负极集流体铜内短路受到电池正极材料导电性能的限制,正极-铜内短路的导电性能较差,因此,正极-铜内短路的产热能力较低。正极材料的导热能力远低于金属材料,但由于铜的导热能力强,因此正极-铜内短路整体的散热能力较好。因为正极-铜内短路的产热能力较低,且散热能力较好,所以正极-铜内短路对电池的加热作用很弱,是四种类型内短路中最低的。 4) 正极集流体铝-负极集流体铜内短路由于金属材料具有良好的导电性,所以铝-铜内短路的导电能力很强,其产热能力很高。同时由于金属材料具有良好的导热能力,所以铝-铜内短路整体的散热能力很强。虽然铝-铜内短路的产热能力很高,但是由于其散热能力很强,可以及时将热量散去,所以总体上,铝-铜内短路对电池的加热作用较强,但低于铝-负极内短路。 表2 电池部件的关键材料性能诱导电池内短路的产生甚至发展到热失控的因素通常可以分为三种:机械滥用、电滥用和热滥用。机械滥用一般指电池受到外力冲击从而导致了物理变形,如受到外力碰撞被挤压变形,或直接被异物刺穿等情况,这些情况都可能会导致电池内部隔膜破损,正负极直接接触;电滥用通常是指由过充、过放等引起的电池内部析锂,造成锂枝晶生长至穿透隔膜,电池正负极直接相连。热滥用通常由于电池外部环境温度过高,或者电池不当使用导致局部温度过高,因而引发内部产生大量副反应,产生了大量热量导致温度升高,隔膜失效,热失控链式反应发生。其中,锂枝晶刺破隔膜导致的内短路由于其形成于电池生命周期内,会比其他热失控的诱因更加难以监测和预防。 参考文献[1]张妹. 高比能锂电池的内短路特性分析, 北京交通大学硕士学位论文, 2023[2]张明轩. 汽车动力电池系统内短路问题研究, 清华大学博士学位论文, 2018 下面内容是锂电池四种内短路类型的有限元模拟结果展示及其模型构建过程。采用comsol软件中的锂离子电池和固体传热模块建立了电池短路模型,模拟四种类型的内部短路对电池温度的影响。 模型简介 几何模型采用二维轴对称,如图3所示,四种内部短路通过锂枝晶与各部件的接触来实现。模型的基本单元主要包括负极集流体(Cu)、负极、隔膜、正极和正极集流体(Al)五个部分,此外包包括造成内部短路的锂枝晶(图中红色部分)。电池的正负极分别都包括电极颗粒和电解液两部分,即电池的正极、负极都是固、液两相的叠加。电池模型的基本理论基础是多孔电极理论和浓溶液理论,用一系列代数方程组、偏微分方程等来描述锂电池内部锂离子的迁移、扩散现象和活性颗粒表面的电化学反应等。 图3 电池内部短路几何模型电池在进行充放电的过程中,发生电化学反应的同时也伴随着热量的产生和消散,热量的改变会引起电池温度的变化,电池温度的改变又进一步影响电化学反应,因此本文引入热模型来描述电池产热以及传热的过程。电池产热主要包括反应热,正、负极集流体、锂枝晶材料上的焦耳热以及极化热。在考虑这些产热源的同时,忽略电池表面的辐射热。 模拟结果正极涂层-负极涂层内短路模拟结果如图4-图6所示,短路之后,电池初始电压4.0V快速下降至3.96V左右,然后缓慢下降,至0.1s时电压下降至3.95V(图4)。与此同时,电池中的最高温度先由初始的20℃快速上升至38℃,然后缓慢上升,至0.01s时温度达到至45℃,再几乎保持不变,略有下降(图5)。0.01s时刻的温度分布如图6所示,温度主要集中在锂枝晶及其周围。 图4 电池电压下降过程图5 电池最高温度演变过程 图6 电池内温度演变分布 正极集流体铝-负极涂层内短路模拟结果如图7-图9所示,短路之后,电池初始电压4.0V快速下降至3.45V左右,然后缓慢下降,至0.1s时电压下降至3.30V(图7)。与此同时,电池中的最高温度先由初始的20℃快速上升至190℃,然后缓慢上升,至0.01s时温度达到至210℃,再开始缓慢下降(图8)。0.01s时刻的温度分布如图9所示,温度主要集中在锂枝晶与负极涂层接触点周围。 图7 电池电压下降过程图8 电池最高温度演变过程 图9 电池内温度演变分布 正极涂层-负极集流体内短路模拟结果如图10-图12所示,短路之后,电池初始电压4.0V快速下降至3.955V左右,然后缓慢下降,至0.1s时电压下降至3.945V(图10)。与此同时,电池中的最高温度先由初始的20℃快速上升至35℃,然后缓慢上升,至0.01s时温度达到至38℃,再几乎不变,略缓慢下降(图11)。0.01s时刻的温度分布如图12所示,温度主要集中在锂枝晶与正极涂层接触点周围。 图10 电池电压下降过程图11 电池最高温度演变过程 图12 电池内温度演变分布 正极集流体-负极集流体内短路模拟结果如图13-图15所示,短路之后,电池初始电压4.0V快速下降至0V(图13)。与此同时,电池中的最高温度先由初始的20℃快速上升至52℃,然后开始下降(图14)。0.0001s时刻的温度分布如图15所示,温度主要集中在锂枝晶与上。 图13 电池电压下降过程图14 电池最高温度演变过程 图15 电池内温度演变分布 对比四种内短路的模拟结果可知:最高温度从大到小排序为:正极集流体铝-负极涂层接触短路(210℃)> 正极集流体-负极集流体接触短路(52℃)> 正极涂层-负极涂层接触短路(45℃)> 正极涂层-负极集流体接触短路(38℃),模拟获得的排序结果与前面文献一致。电压下降值从大到小排列为:正极集流体-负极集流体接触短路(4.0 V => 0 V)> 正极集流体铝-负极涂层接触短路(4.0 V => 3.3 V)> 正极涂层-负极集流体接触短路(4.0 V => 3.945 V)> 正极涂层-负极涂层接触短路(4.0 V => 3.95 V)。 接下来分享模型建立过程和一些说明,如果对模型感兴趣可付费49元继续阅读,并可获得对应的模型源文件。 来源:锂想生活

有附件
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈