首页/文章/ 详情

有限元 | 弹性支座

6月前浏览8929

考虑一段一端由线性弹簧支撑的细长梁,如图1所示,弹簧刚度为    ,则弹簧的应变能为

▲图1

 

其中,    是梁在    处的挠度。

梁的势能为

 

现在来求    

▲图2

如图2所示的两节点梁单元,    分别为四个节点自由度。物理坐标系    和自然坐标系    的线性映射关系

 

在节点1的位置时    ,在节点2的位置时    。挠度由三次多项式表示为

 

梁的转角

 

其中,    为单元长度。在节点1的位置时    ,由(2)(3)可得

 
 

在节点2的位置时    ,由(2)(3)可得

 
 

(4.1)~(4.4)联立解得

 

(5)代入(2)得

 

其中

 

记    ,(6)写成矩阵形式

 

由(3)可知,梁的广义应变(曲率)

 

 

 

其中    是应变矩阵。应力

 

由(7)(8)可知,(1)中的    就是    时    的值。

 
 

梁单元势能的表达式

 

其中记

 
 
 

经计算得

 

对于具有弹性支承的单元,只需将    加入到常规单元刚度矩阵中。

▲图3

对于图3所示得梁,弹簧刚度为    。只划分一个单元时,其有限元平衡方程为

 

考虑边界条件之后

 



来源:数值分析与有限元编程
Dassault 其他
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-05-12
最近编辑:6月前
太白金星
本科 慢慢来
获赞 5粉丝 13文章 325课程 0
点赞
收藏
作者推荐

有限元| 支座沉降

考虑一个有限元模型的势能泛函 其中, 是整体节点位移矩阵, 是整体刚度矩阵。已知沿支座的自由度1的方向产生位移为 ,即 。那么求势能泛函(1)的极值变成了在约束条件 下的极值问题。 用罚函数将有约束问题转化为无约束问题。引入一个很大的正参数 ,构造新的泛函 令 得到新的平衡方程 这里可以看到,为处理 ,需要对以上方程进行修正,即将一个大数 加到 的第1个对角元上以及将 加到 上,式(4)的解即为节点位移列阵 。节点1处的支反力为 需要说明的是:这里所说的罚函数法只是一种近似的方法,最终求解的精度,特别是支反力的求解精度,取决于 的选取。考察方程组(4)中的第一个方程 (6)两边除以C 从(7)式中我们可以发现,如果 比刚度系数 大得多时,那么有 。 是施加在支座处的外力(如果存在的话),而且 通常是一个很小的值。例1图1中,有一个外力 在作用在杆中点,求杆的位移、应力和支座支反力(取 )。▲图1在这个问题中,我们首先应该确定杆与墙之间是否发生接触。假设墙不存在,那么点B的位移为 .从这个结果可以看出接触是存在的,因为边界条件发生了变化,即点B的位移是给定的 ,所以需要重新求解。建立两个单元的有限元模型如图1b所示,边界条件为 和 ,结构刚度矩阵为 整体节点力列阵为 按照上述方法,取 ,则修正后的方程如下 解得 支反力为 精确解为 , 。由罚函数法得到的结果有一个小的近似误差。例2▲图2如图2所示的四杆桁架结构。对于每个单元,给定 , 。节点2竖直下移 。用先处理法建立如图3所示的有限元模型,得到的平衡方程组为▲图3 考虑支座移动的影响,需要修正平衡方程组。在与指定位移值的自由度相对应的结构刚度矩阵对角线元素上加上一个大常数 。一般来讲, 可以取为修正前刚度矩阵的最大对角线元素的 倍。此外,载荷列阵的对应位置还要加上力 ,其中 为指定的位移值。在本例当中,对于自由度2来说, ,因而载荷列阵的第2行上要加上一个大小为 的力。修正后的有限元方程组为 来源:数值分析与有限元编程

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈