首页/文章/ 详情

【技术贴】Volvo汽车风噪仿真技术案例(基于Actran)

7月前浏览13472

本文摘要:(由ai生成)

本文探讨了汽车高速行驶时的风噪声问题,介绍了Volvo公司采用的两种计算方法:瞬态CFD联合求解法和基于稳态CFD的SNGR联合求解法。瞬态CFD法精确但网格要求高,适于高频声波;SNGR法利用稳态CFD数据,快速识别噪声源,适用于中高频段。比较发现,瞬态CFD在低频更精确,SNGR在中高频更高效。文中还展示了Actran在国内汽车风噪声计算中的应用,证明了其有效性和技术路线的科学性。


1前言

当汽车行驶速度大于100km/h 时,外部风噪声会传播到车内。目前常用的汽车风噪声研究验证方法为采用CFD与CAA混合的方法,精确描述紊流导致的噪声源:

  • 后视镜后部形成的尾迹区域;

  • 侧窗和A柱区域形成的湍流区。

图1-1 汽车风噪声形成过程示意图

文以Actran在Volvo公司的汽车风噪声项目为例,介绍两种汽车风噪声计算方法:

  • 基于瞬态CFD与Actran Aero-Acoustics联合求解方法;

  • 基于稳态CFD与Actran SNGR联合求解方法。

2

瞬态CFD与Actran Aero-Acoustics联合求解

本项目中采用Volvo-V70车型,研究工况为140km/h ( Mach = 0.114)。

图2-1基于瞬态CFD与Actran Aero-Acoustics联合求解流程

Volvo在本次项目中采用的CFD模拟软件是Fluent。Actran支持与绝大多数CFD软件的数据连通,如Starccm+,SC/Flow,CFX…

在CFD模拟中,瞬态分析中采用LES湍流模型,采用不可压缩空气模型,Δt=2E-5s,保存数据的物理时间为0.03022s到0.29022s。


图2-2 CFD计算边界条件及输出数据区域

图2-3 声学计算区域及监测点

Actran可以设置滤波面,来消除体声源边界上声源截断产生的假性声源。

图2-4 滤波面示意图

需要注意的是,当CFD的网格尺度过大,数值耗散较大时,CFD的数据就很难反映出高频的声波信息。网格尺度与截止频率的关系式为:

(2-1)

其中F是声学截止频率,Ƹ是湍动能耗散率,Δ是网格尺度。

在CFD模拟中,声源区域的网格平均尺度为4mm时,可以支持到的声学截止频率约1250Hz,如下图所示。

图2-5 湍动能耗散率及截止频率

图2-6 4mm的CFD网格对应的声学计算结果

图2-7 2mm的CFD网格对应的声学计算结果

小结:

1)当采用瞬态CFD与Actran Aero-Acoustics联合求解风噪声时,可以得到精确的计算结果,包括计算车外噪声和车厢内噪声;

2)此时的瞬态CFD对网格要求比较高,一方面湍流模型的选取直接决定边界层网格尺度;另一方面上文介绍到的截止频率问题,CFD网格尺度直接决定声学结果的频率上限。


3

基于稳态CFD与Actran SNGR联合求解

SNGR方法的基本原理是:基于RANS计算得到的时均流场的速度、湍流动能分布特性,通过添加随机扰动的方法重新合成含有时间项的流场数据。利用ACTRAN的声类比方法计算声源和噪声传播。

湍流动能谱可以写成以下形式:


上式中:

K为RANS计算得到的湍流动能;

是最大湍流动能对应的波数;L为RANS结果中的湍流积分长度尺度;为Kolmogorov波数;从RANS流场结果中得到。

由于RANS为稳态结果,为了保证可以输出频域的噪声结果,需要添加与时间相关的项(下图中的随机函数),从而合成脉动速度。

图3-1 SNGR方法的基本原理

图3-2 SNGR分析流程(与第二章节比较)

SNGR方法的主要特点:

– 采用更高效、稳态的CFD数据进行CAA分析

– 可快速识别噪声源的位置

– 可应用于不同设计/结构之间的相对水平的预测

– 中高频段的精确模拟

该项目中采用与上述同款车型、同车速进行模拟。CFD 设置 :

– 雷诺时均方法(RANS)

– K-ε 标准湍流模型

– 不可压缩

图3-3 CFD计算域及声学计算域

声学设置内容包括:

– 声源区域来自CFD计算域,声源区域网格重新生成

– 声学吸收区域(Buffer region,对应APML)在各方向均为0.05m厚

– 自适应的完美匹配层(APML)

– 设置4个可以监测Y方向声强的虚拟麦克风


图3-4 声学完美匹配层及测点示意图

计算时采用的计算机性能:(2x Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz 处理器,8核)

由此可知:采用SNGR方法时,CFD网格只有2.5Milloin,所以计算成本很低,且计算结果非常精确;同时在计算噪声时可以选择更为精确的频率分辨率(可以设置为2Hz)。

SNGR对CFD网格的要求是什么样的呢?是不是也有上文中的截止频率问题。我们用两种尺寸的CFD网格来输出数据,并用SNGR方法计算风噪声。分别在声源区域采用2mm和4mm的网格尺寸(声源区平均的网格大小)。

图3-5. 不同CFD网格示意图

图3-6. 不同CFD网格对应的SNGR声学结果

从上图来看:

a. 两个结果较为接近。采用SNGR方法预测风噪声时,对CFD网格的尺度反应不灵敏,也就是不需要采用特别密集的网格来进行稳态CFD分析;

b. 采用SNGR方法时,不需要考虑截止频率的影响;

c. SNGR计算风噪声仅需CFD稳态流场的收敛和湍动能的准确统计即可。


4

两种方法的比较

下面对比SNGR方法和非定常CFD+AERO-Acoustics方法的区别。

项目中CFD的网格均采用4mm的尺寸,SNGR计算结果(SNGR计算结果需等比例缩放)与非定常CFD+AERO-Acoustics结果进行对比。

图4-1. 两种模拟结果与实验测试结果对比

以上结果可知:

a. 从图上来看,如果主要声源区网格尺度约4mm,那么采用瞬态CFD方法+Actran联合计算风噪时,可以计算到1250Hz左右,同样2mm的声源区网格可以支持到2000Hz。因此,如果获得较为精确的风噪结果,可以采用瞬态CFD + Actran Aero-Acoustics的方法。

b. SNGR方法在低频有些信息缺失,无法精确捕捉低频结果;但SNGR可以很好的预测400Hz~3000Hz频段汽车风噪声大小;因此,由于SNGR对CFD的要求较低,中高频利用Actran SNGR可以快速、高效且准确的预估风噪声大小。


5

Actran 国内汽车风噪声应用

5.1 长安汽车风噪案例简介

本案例是2015~2016年期间,长安汽车实施的汽车风噪项目,仅截图展示。

图5-1 某车型车身表面CFD网格

图5-2 声源求解及数据转换模型

图5-3 车内空腔模型

图5-4 体声源分布示意图

图5-5车内声压分布图

图5-6 某切面声压分布

长安汽车相关人员表示Actran满足风噪计算需求,且技术路线合理科学,计算结果亦可反映车内真实噪声水平。

5.2某民族品牌风噪案例简介

该案例分别计算侧窗区域两种声源,并计算两种声源传递到车内的响应结果。

图5-7 两种声源计算过程示意图

图5-8车内空腔示意图(六面体网格)

Actran自带网格划分功能,可以把车内空腔网格划分成以六面体为核心的体网格,这样总体网格数大大降低,提高计算效率。

图5-9 车内测点频谱曲线,由于涉密原因隐去坐标值,仅显示趋势

在项目执行中期阶段,该品牌汽车风噪开发人员表示Actran可以完成AWPF和TWPF的计算,且车内空腔六面体网格技术效率较高,在较短的时间内得到的曲线整体趋势与实验吻合度较好。仿真得到噪声曲线对窗结构的边界条件定义较为敏感。我们观察到仿真结果在频率上的抖动,有可能为窗结构的边界与实际存在不一致,产生较强的模态效应所致,这方面作为该汽车企业风噪仿真后续工作的调整方向之一。

来源:懿朵科技
ACTFluentCFX湍流汽车Acoustics声学
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-20
最近编辑:7月前
懿朵科技
签名征集中
获赞 22粉丝 17文章 84课程 0
点赞
收藏
作者推荐

【技术贴】汽车风噪声仿真方法研究进展

随着风噪对整车NVH性能贡献越来越显著,汽车企业对风噪仿真分析开展了大量研究。本文介绍计算声学软件Actran 的理论与风噪分析流程。Actran 提供了三种气动声学分析方法:Lighthill 声类比、Muhring 声类比方法、SNGR方法。国际知名车企应用CFD+Actran 的混合计算方法研究风噪取得显著成果,从最初仅使用TWPF(湍流壁面脉动压力)载荷计算车内噪声响应,到使用TWPF+AWPF(声壁面脉动压力),以及最近几年逐步应用的稳态流场+SNGR方法快速评价风噪性能。文中也介绍了例如湍流模型、计算域选取、网格尺寸、时间步等相关经验。具体内容如下PPT:基于Actran的汽车风噪声仿真分析研究进展介绍汇报人:李奇 博士 来源:懿朵科技

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈