摘要
文章主要介绍了结构动力学分析的基本原理和方法。首先,解释了结构质点运动时的受力情况,包括惯性力、阻尼力和弹性恢复力,并通过一个方程(ma+cv+ku=F(t))表示了这些力的关系。随后,讨论了动力学运动方程的求解方法,特别强调了瞬态动力学分析在模拟实际载荷变化中的重要性。接着,文章介绍了根据载荷F(t)的不同形式,可采用的简化分析方法,包括模态分析、谐响应分析、反应谱分析和随机响应分析,并分别给出了这些分析方法的应用场景和实例。最后,文章通过汽车、飞机等实际工程案例,说明了这些动力学分析方法在解决工程问题中的重要性和应用。
正文
我们都听说过一句话:静止是相对的,运动是绝对的。
理论上,所有的物体都是运动的。所有的力学问题,其载荷都是和时间相关的。以单自由度的质点为例,结构在运动时大致会受到如下所示的几种作用力。
单自由度质点受力图
其中:
惯性力与加速度有关,质量越大,加速度越大,惯性力就越大。
阻尼力与速度有关,结构的阻尼越大,结构受力后运动的速度越快,阻尼力就越大。
弹性恢复力与刚度有关,结构刚度越大,变形越大,弹性恢复力就越大。
以上结构质点的受力可以用一个方程表示:
ma+cv+ku=F(t)
该方程称为结构的运动方程,其中:m为质量,a为加速度,c为阻尼,v为速度,k为刚度,u为位移,F(t)为外载荷。
如果结构质点是静止或匀速直线运动的,即加速度a=0,且F(t)不随时间变化,变成一个恒定的F,则方程就变成了静力学平衡方程:
ku=F
这就是静力学与动力学的主要区别。
对于动力学运动方程的求解,有限元分析中最直接的方式就是瞬态动力学分析,直接施加随时间变化的载荷进行分析。这种分析方法是最接近实际情况的,也是最准确的。
齿轮结构瞬态动力学分析
然而,在实际工程中,这个F(t)是花样百出的,如果直接采用瞬态动力学分析,有时候显得很浪费时间,有时候又不一定能搞得出结果。
因此,我们就根据F(t)的不同形式,采用不同的简化方法来进行分析,包括模态分析、谐响应分析、反应谱分析、随机响应分析等。
线性动力学分析根据载荷形式分类
如果F(t)=0,对于结构质点来说,就是一个自由振动问题,在有限元仿真分析中对应的分析类型为模态分析,如果不考虑阻尼c,则为无阻尼自由振动。
模态分析是研究结构动力特性的一种方法,通常应用在工程振动领域。它关注于机械结构的固有振动特性,每一个模态都具有特定的固有频率、阻尼比和模态振型。模态分析的主要目的是通过计算和分析这些模态参数,来了解结构在不同模态下的振动特性。模态分析也是后续动力学分析的基础。
汽车模态分析
飞机模态分析
如果F(t)是一个变化频率固定的,类似于正弦(简谐)变化的载荷,在有限元仿真分析中对应的分析类型为谐响应分析。
工程中许多设备都会承受简谐载荷的作用,例如:电机、泵、风机和发电机组等旋转机械,发电机、变压器和传输线路等电力装备,压缩机、振动筛等往复运动的设备。
固定频率变化的载荷
电机谐响应分析
如果F(t)在不同频率下有不同的值,在有限元分析中可采用反应谱分析方法。例如地震载荷,在地震时,它看似一个随机的载荷,但经过处理,可以把载荷变成不同周期(或频率)下的反应谱曲线。
地震载荷时程曲线
《建筑抗震设计规范》(GB 50011-2010)中的反应谱曲线
建筑结构地震响应分析
如果F(t)是随机变化的,只能通过统计学方法,将随机变化的载荷进行转换,变为和频率相关的函数(功率谱密度),通过随机响应分析来评估其作用大小了。
工程中如汽车在颠簸的路面行驶、飞机在跑道滑行及空中飞行、航天器发射、风载荷作用于建筑或设备上,都是承受随机载荷的情况。
随机载荷
功率谱密度
汽车在颠簸路面行驶
风载荷作用于建筑物
飞起在跑道滑行