首页/文章/ 详情

考虑滑动带摩擦热演变的高速远程滑坡机理

7月前浏览9520



   

论文题目

Mechanism of the high‑speed and long‑run‑out landslide considering the evolution of the frictional heat in the sliding zone

Yanfeng Zhang1,2Wengang Zhang2Luqi Wang2, Ting Xiao3, Xuanyu Meng2 Zhihua Zhang4

1Chinese Academy of Geological Sciences, Beijing 100037, China

2School of Civil Engineering, Chongqing University, Chongqing 400045, China

3Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info‑Physics, Central South University, Changsha 410083, China

4Chongqing 208 Geo-Environmental Research Institute Co. Ltd, Chongqing 400700, China



 

研究内容

Abstract: A unified and systematic understanding of the dynamic mechanism of high-speed and long-run-out landslides has not been achieved due to the fast-movement speed and long sliding distance. It is difficult to explain the evolution process using conventional dynamic methods. In this study, the evolution of the frictional heat in the sliding zone and dynamic process of the Guang’an Village landslide were studied through field investigation and MatDEM numerical simulation software.A nucleated high-heat area was formed near the sliding zone, and it expanded in the forward motion direction during the sliding. The highheat area corresponded to the trajectory projection of the thickest part of the sliding mass.It was difficult for the heat generated by the friction in the sliding zone to dissipate during the few seconds of the sliding process, and 80% of the heat was stored in the rock and soil near the sliding zone, causing the temperature of these materials to increase sharply. The connection state diagram and heat field diagram of the MatDEM unit intuitively showed the fracture development process in the sliding mass and sliding bed. The results of this study provide an important reference for the evolution mechanism of high-speed and long-run-out landslides.

Keywords: High-speed and long-run-out landslide ; Guang’an  Village landslide  ; Discrete element method ;  MatDEM ;  Frictional heat.


Fig. 2 Engineering geological plane map of the Guang’an Village landslide

Fig. 3 Engineering geological profile of the Guang’an Village landslide

Fig. 6 Establishment of the slope model. a Generation of elements with random sizes and initial velocities.b Gravitational deposition of the elements. c Division of stratum level curve. d Definition of the slope stratum and input of the stratum parameters into the slope model

Fig. 7 Velocity curves of the monitoring points on the front, middle, and rear elements during the landslide movement

Fig. 8 The characteristics of the velocity field during landslide motion: a 0.6 s, b 12 s, c 27.5 s, and d 60 s

Fig. 11 Heat curves during the landslide movement process

Fig. 12 The heat field distribution characteristics during the landslide movement process: a 0.6 s, b 12 s, c 27.5 s, and d 60 s


 

了解详情


 

ZHANG Y F, ZHANG W A, WANG L Q, et al. 2023. Mechanism of the high-speed and long-run-out landslide considering the evolution of the frictional heat in the sliding zone. Natural Hazards [J]: 19.


来源:矩阵离散元MatDEM
ACTSystemUGUM离散元FAST
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-21
最近编辑:7月前
MatDEM
中国自己的工程数值计算软件
获赞 163粉丝 1212文章 146课程 36
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈