本文摘要:(由ai生成)
本文探讨了二极管钳位电路在电池管理系统(BMS)中的应用及其局限性。肖特基二极管常用于限制AD采样端口电压,但钳位效果受电源灌电流能力影响。当电源灌电流能力不足时,异常电压可能导致电源电压抬升,损坏其他负载。通过仿真分析,提出了增大限流电阻或选择外部负载较大的电源网络等改进措施。同时,文章还讨论了BMS在短路保护测试中的硬件故障问题,并建议采取相应措施避免电压抬升故障。
前几天看了一个公 众 号文章,是关于二极管钳位电路的文章,链接在此:《关于二极管钳位电路的思考与学习》,里面写的是关于下图这种钳位二极管的使用问题,很有意思;在BMS中也经常使用这种肖特基二极管做一些AD采样端口的幅值限制,工作原理就是异常电压经过限流电阻后,二极管导通,因为二极管导通压降基本固定,这样将电压钳位在-0.7V或5.7V(下图中连接到+5V电源),用来保护AD端口。
但我们往往忽略了一个前提,文章中也提到了这个问题,即要能做到钳位住电压的前提条件是这个电源要有一定的灌电流能力,可能我们很多人会把单板上的电源都当成了理想的电源,即有拉电流的能力也有灌电流的能力,但是实际上,很多LDO是不具有灌电流能力的,所以这样使用二极管做钳位是没有效果的。
那么此时,会发生什么呢?仿真一下如下图,左边绿色方框为一个5V的LDO电源(二极管D1用来模拟此LDO不能灌电流),右边方框为外部的12V异常输入电压,这个电压被二极管钳位连接到LDO电源(二极管省略了),R1\R2\R3为LDO的外部负载,R4为限流电阻;我们首先看下当这个异常电压不存在时,A点的电压大概为4.97V左右。
然后,闭合S1,模拟异常的12V电压被连接到LDO电源,此时发现A点的电压抬升到9.23V,是远远大于5V的,此时就失去了钳位作用,而且这个9.23V可能还会损坏LDO供电的其他负载,所以不但钳位电路未起作用,而且还会导致其他负载的损坏。
接着,我们把限流电阻R4增大,然后会发现A点电压回落到了4.99V,此时电路不会损坏,这个告诉我们可以通过增大信号线上的限流电阻来提高防护能力。
换一种方法,我们将LDO外部的负载R1\R2阻值减小,再次仿真,发现A点的电压也是回落到5V以下,也起到了保护作用,这个告诉我们可以将钳位电源选择一路外部负载比较大的电源网络。
写到这里,我们带着上面这些知识来看下BMS上面遇到的一些实际问题,在之前的发文《案例分析:BMS电气测试中短路保护测试出现的硬件故障》中,提到过BMS会针对信号端口做一些短路到电源的测试,例如NTC\CC2\HVIL等外部输入信号,参考下图:当A点短路到电源后,可能出现的问题是内部的供电电源被抬升,进而SBC出现过压故障,进入安全状态,导致整个BMS的功能丧失,其电源电压抬升的原因就与上面相同。
对于SBC来讲,其上的线性电源被用来给一些数字电路供电,或被当成参考电压源,但是这些线性电源可能也不具有灌电流的能力,外部输入的信号如果钳位到此电源或者上拉到此电源,就会产生电压抬升的问题。