本文摘要(由ai生成):
这篇文档主要介绍了 Adams/Car 在汽车底盘动力学开发中的应用,包括整车动力学模型的基本构成、车轮模板及子系统、车身模板及子系统、动力模板及子系统、制动模板及子系统、轮胎动力学模型等方面,同时还介绍了整车动力学模型调参的方法和流程。文档最后提到,为了帮助大家快速掌握 Adams/Car 汽车底盘动力学开发核心技术,机械工业出版社邀请王彦伟老师带来了“Adams/Car 在汽车底盘动力学开发中的应用”系列公开课,并提供了直播入口和相关图书信息。
导读:为了帮助大家快速掌握Adams/Car汽车底盘动力学开发核心技术,机械工业出版社邀请《ADAMS/Car汽车底盘动力学虚拟开发》作者、仿真秀精品视频课程《AdamsCar悬架动力学系列课23讲》创作者王老师,为用户/读者带来“Adams/Car在汽车底盘动力学开发中的应用”系列公开课。本系列课程共分为4讲,涵盖ADAMS/CAR基础应用与操作、麦弗逊悬架动力学建模、悬架K&C基础知识及仿真分析、整车动力学模型及仿真分析等。
本文主要讲解整车动力学模型相关内容。欢迎订阅学习!
图1.整车动力学模型
通过File->Info功能,可以查看到上述整车动力学模型的基本信息如下表。
从表1可以得到如下基本信息:
1)TA01整车动力学模型由10个子系统构成。
2)每个子系统有其主特征和次特征属性,主特征在模板创建时根据其特性所决定。
3)子系统次特征由对应子系统的位置在创建时选择确定。
模板的主特征、子系统的次特征一定要与自身的特性和位置对应起来。如不慎建立错误,则可采取另存的方式进行更改,而无须从零新建模型。
上述10个子系统根据整车模型架构又分为必需子系统和可选子系统两大类,如图2所示。
图2中,整车动力学模型含6个必需子系统,分别是前、后悬架,转向,前、后车轮,车身子系统,缺少其中任何一个都无法搭建成整车动力学模型;而制动、动力、前/后稳定杆子系统在模型架构上属于可选子系统,可根据仿真分析的内容来决定是否需要,如做四立柱平顺性仿真分析时,制动和动力子系统可不添加。
需要特别说明的是,整车仿真分析中,搭建整车模型时必须选择对应的整车试验台,此处整车试验台也可理解为一个特殊的子系统。
1、车轮模板及子系统
悬架装配体中,车轮隶属于悬架试验台,不需要用户自建。而整车动力学模型中,前、后车轮是必需子系统,故需要用户自己建立车轮模板和对应的子系统。
图3.车轮模板及车轮组件基本参数
车身子系统是构成整车动力学模型的必须子系统之一。
ADAMS/Car乘用车共享数据数“shared_car_database.cdb”自带有两个刚性车身模板“_rigid_chassis.tpl”和“_rigid_chassis_lt.tpl”,不同之处在于前者具有车身几何体而后者无,其他并无本质差异,分别如图4和图5所示。
图4中,车身的几何体通常是使用导入(import)功能添加到模型中,导入前可提前建立一个输入式硬点hps_chassis_graphics作为参考点,以便于后续调整几何体的位置。导入车身几何体会使整车模型内存加大,影响仿真分析效率;而整车仿真多是试验台驱动,故在实际工程中使用刚性车身时,如不涉及空气动力学方面的分析,通常不必关注车身几何外形。
下述内容有利于用户理解刚性车身。
1) 在整车动力学模型中,刚性车身主要连接固定悬架、转向、动总等子系统;
2) _rigid_chassis_It.tpl模板中,刚性车身共涉及两个常规部件ges_chassis和ges_trim_mass,其中ges_chassis代表车身本体,而ges_trim_mass可理解为配重部件,用于调整质量分布。
3) _rigid_chassis_It.tpl模板中ges_chassis部件不受约束,而ges_ trim_mass部件固定在Chassis上。
从整车动力学模型架构而言,动力子系统是一个可选子系统,因此在不涉及与动力总成相关的仿真分析时(如整车加速性能),可忽略动力子系统。
ADAMS/Car乘用车共享数据库提供了一个动力模板_powertrain.tpl,此动力模板是指发动机、变速箱、差速器的组合体,主要用于前驱或后驱车型,如图6所示。
4、动力模板及子系统
制动子系统也是一个可选子系统,在不涉及与制动性能相关的仿真分析外,可忽略制动子系统。shared_car_database.cdb提供了一个四轮盘式制动器模板_brake_system_4Wdisk.tpl供乘用车借用,如图7所示。
图7._brake_system_4Wdisk.tpl模板
下述内容有利于用户理解制动模板:
1) 制动卡钳通过输入通讯器cil[R]_front/rear_suspension_upright固定到悬架模板中的转向节上;而制动盘通-过cil[R]_front/rear_rotor_to_wheel固定到车轮上,其角度由悬架子系统中的前束角和外倾角变量决定。
2) 图9所示仅为一种简易的制动模板,其无法定义卡钳和制动盘之间复杂的相反作用。与之对应的是,在“acar_concept.cdb数据库中有一个功能定义较为全面的四轮盘式制动模板“_brake_system_4Wdisk_calipers.tpl。
5、轮胎动力学模型
要进行整车动力学仿真,分析期望指标,需具备基本的三个条件:整车装配体、试验道路、试验工况。本节主讲第一个基本条件整车装配体,即整车动力学模型。为使分析结果具有更为可靠的指导意义,整车动力学模型的调参是必不可少的。
(1)借用可以正常仿真分析的整车模型修改搭建目标整车。
调参,又或称为模型调校或调整,其主要目的是将动力学模型尽可能调整到与实际项目一致,以确保分析出来的结果更具有参考指导意义。
整车动力学模型基本调参流程及调参对象如图8所示。
王老师,仿真秀优秀讲师,某主机厂底盘动力学工程师
近15年的乘用车底盘研发工作经验,先后从事过制动、转向系统开发,最终专注于悬架系统及底盘动力学开发,具有多款乘用车的完整项目研发经历。仿真秀专业技术平台优秀讲师,其底盘动力学课程受到广泛好评。
3、直播入口
4、相关图书