文一:
DOI: 10.1111/ffe.14279
一种新的压剪条件下弹脆性裂纹体断裂准则
弹脆性裂纹体在压缩剪切载荷作用下,不仅会出现翼裂萌生和扩展现象,而且由于剪切应力的作用,还会出现明显的二次裂纹萌生和扩展。此外,在经典断裂力学框架下,断裂准则预测的剪切断裂韧性(KIIc)通常小于拉伸断裂韧性(KIc),这与实际观察结果不一致。因此,本研究首次建立了考虑三种裂纹参数和材料力学性能的弹脆性裂纹体在双轴压缩下的力学模型。然后,分析了裂纹尖端的应力场特征。其次,提出了压剪混合断裂准则。最后,研究了侧压力系数(λ)、临界塑性区尺寸(rc)、摩擦系数(f)和裂纹表面变形参数对裂纹尖端失效模式的影响。
图:裂纹的基本模式:(A)I型裂纹(拉伸破坏);(B) II型裂纹(剪切破坏);(C) III型裂纹(剪切破坏)。
图:II型荷载下的裂纹与真实II型裂纹之间的区别:(A)II型荷载作用下的裂纹,其中断裂类型为拉伸破坏;(B)II型裂纹,其中破裂类型为剪切破坏。
图:压剪作用下的闭合裂纹及其等效模型。
图:在λ=0的压缩和剪切条件下,具有不同原始裂纹倾角(α)的裂纹尖端无量纲应力分量fθ和frθ与θ的关系曲线。
图:裂纹尖端附近塑性区内的应力分量示意图。
图:Keff与α在不同f的压缩和剪切下的曲线。
PDF原文:
文二:
DOI:10.1007/s12206-024-0204-z
高强度钢在军用标准极限振动下的疲劳失效比较研究
高强度钢被广泛用于国防工业中使用的设备和车辆的设计,这些设备和车辆在使用寿命期间大多暴露于具有超正常振幅的随机振动中。本研究的动机是研究高强度钢在过度随机激励下的性能。为了比较在军事应用中广泛使用的不同钢材的结果,根据MIL-STD-810G标准,对由S355MC、S700MC和S960MC钢组成的样品进行了随机振动试验。与预期相反,有人奇怪地观察到,由于阻尼比较低,高强度钢可能会经历更高的应力,导致比预期更早失效。研究结果表明,很难确保高强度钢的使用总是能提供更长的寿命,尤其是在振动环境中。此外,应用激光切割和铣削两种常用的样品制造方法来观察制造方法的效果。通过考虑不同材料和制造方法的实验结果,还评估了频域和时域上的不同疲劳损伤模型。
图:实验的示意图和控制图。
图:实验设置。
图:破裂钢的截面图。
图:阻尼自由振动试验装置。
图:响应功率谱密度。
PDF原文:
文三:
基于物理的机器学习及其结构完整性应用:最新进展
机器学习(ML)的发展为保证关键部件在服役期间的结构完整性提供了一个很有前途的解决方案。然而,考虑到缺乏对基本物理定律的尊重、数据匮乏的性质和较差的外推性能,纯数据驱动方法在结构完整性方面的进一步应用面临挑战。一种新兴的ML范式,物理知情机器学习(PIML),试图通过将物理信息嵌入ML模型来克服这些限制。本文讨论了将物理信息嵌入ML的不同方法,并回顾了PIML在结构完整性方面的发展,包括故障机制建模、预后和健康管理(PHM)。PIML在结构完整性中的应用探索证明了PIML在提高与先验知识的一致性、外推性能、预测准确性、可解释性和计算效率以及减少对训练数据的依赖性方面的潜力。这项工作的分析和发现概述了现阶段的局限性,并提供了PIML的一些潜在研究方向,以开发先进的PIML,确保工程系统/设施的结构完整性。
图:物理知情损失函数图。
图:基于物理的体系结构图。
图:物理知识预训示意图。
图:基于物理和ML模型的混合图:(a)基于物理的特征工程;(b)多模型融合。
图:疲劳有限寿命物理知情神经网络算法研究。
图:基于物理的结构损伤识别DNN框架。
PDF原文:
文四:
10.1016/j.prostr.2024.01.053
混合模式载荷作用下含裂纹面摩擦的斜缘裂纹疲劳裂纹路径预测
准确描述疲劳裂纹扩展速率和疲劳裂纹扩展方向对于确定钢结构的剩余疲劳寿命,特别是铁路钢轨的剩余疲劳使用寿命至关重要。裂纹扩展速率和裂纹扩展方向取决于裂纹驱动力。应力强度因子(SIF)通常被认为是裂纹的驱动力,它取决于施加的载荷、裂纹长度和几何形状。本文对轨道在移动补片载荷作用下的倾斜边缘裂纹进行了数值研究,以评估其增长速度和方向,包括法向和切向应力分量。创建2D有限元(FE)模型,包括裂纹面之间的摩擦力。在每次通过移动载荷后,裂纹在预测的方向上逐渐扩展。对摩擦系数和牵引系数的影响进行了参数研究。根据预测的裂纹路径和应力强度因子特性对结果进行了比较。结果表明,摩擦和牵引对疲劳裂纹扩展速率和路径都有显著影响。
图:几何概述。
图:有限元模型中的网格细化示例。
图:(a)二次VCCT算法中使用的网格示意图概述;(b)用于确定裂纹扩展方向的坐标系。
图:作为相对加载位置的函数的应力强度因子;(a) 模式I应力强度因子,(b)模式II应力强度函数,(c)不同裂纹增量∆a的预测裂纹路径。
图:不同摩擦系数的应力强度因子(a)模式I,(b)模式II,(c)最小KII和最大KII(d)µw−r=0.4的预测裂纹路径。
PDF原文:
文五:
铁路车辆脱轨后自我保护机制的研究
随着铁路网的快速扩张和运输需求的增加,铁路系统的运营安全,特别是防止列车脱轨的风险管理和安全措施变得至关重要。本研究调查了铁路车辆脱轨后的动力学行为及其自我保护机制。为了了解铁道车辆脱轨后的动力学行为,在实验室进行了半车全尺寸脱轨试验。随后,通过整合多边形接触模型,建立了半车脱轨后接触碰撞动力学模型。该模型考虑了车辆和轨道系统中各种部件的实际几何形状,并通过将数值结果与脱轨实验结果进行比较来证明其有效性。随后,建立了铁路车辆脱轨后全尺寸动力学模型,并进一步用于研究铁路车辆自我保护电机安装的安全区域。此外,还对铁路车辆在不同板型上运行的自我保护进行了比较分析。结果表明,与CRTS I型板式轨道相比,CRTS II型板式轨道包含路肩块,显示出更好的防护能力。
图:(a)脱轨试验台,(b)脱轨试验半车,和(c)脱轨器。
图:测试设备(a)位移传感器和(b)Somat eDAQ数据采集仪器。
图:半车脱轨动力学模型。
图:(a) 不同板的WS1的横向位移和(b)WS1在不同时间的动态行为。
图:(a)当dy=0.1m时,dh对脱轨后轮对横向位移的影响以及(b)不同电机位置的状态分类。
图:车辆脱轨动力学模型。
PDF原文:
An investigation into post-derailment self-protection mechanisms for railway vehicles.pdf
计算机技术在科学&技术&工程&数学中得到了广泛的应用,力学方面,计算机技术成为了科学的第四次革命性技术,现在基于计算机的数据科学已经逐步成为力学等其他科学发现的第四范式。人工智能、大数据、数字孪生等概念已经逐步成为当今时代的主题。智能制造、智能算法、数据驱动力学、大语言模型、自动驾驶在当今社会展现出巨大潜力,吸引了大量的研究人员。同时高性能显卡和多核中央处理器的出现为大规模数值模型的高性能计算提供了强大算力。然而因为该领域的论文较多,涉及内容较广,需要的知识量较大,不仅需要力学,数学,物理的知识,还需要计算机、数据科学、大数据分析的知识。入门门槛较高,因此我建立了此微 信 公 众 号,希望通过自己的学习加上文献翻译和整理,帮助新手快速掌握前沿研究的热点和聚焦,轻松入门计算的相关研究(实验、理论、数值计算方法),从而吸引和聚焦更多对该技术和研究领域感兴趣的华人朋友,为推动智能计算与基础科学的科学研究的发展和交流做一点儿贡献!