经典欧拉梁单元不考虑剪切变形。基于试函数的能量方法(也称为泛函极值方法),基本要点是不需求解原微分方程,但需要假设一个满足位移边界条件的许可位移场。因此,如何寻找或构建满足所需要求的许可位移场是一个关键,并且,还期望这种构建许可位移场的方法还应具有标准化和规范性。下面的重点将讨论通过基于“单元”的位移函数的构建就可以满足这些要求。
为方便起见,推导经典梁单元刚度矩阵需要使用自然坐标系和物理坐标系。由于有4个位移节点条件,可假设梁单元的位移场挠度为具有四个待定系数的函数模式,其中 C1, C2, C3, C4 为待定系数。
N(ξ)叫做单元的形状函数矩阵。这样一来便于矩阵化运算。
梁构件存在受均布载荷情况,若就受均布载荷部分的梁构件建立单元,则需要就所建立的梁单元给出相应的节点等效载荷。