本文摘要(由AI生成):
本文简要介绍了协调元、非协调元和广义协调元三种有限元类型。协调元应用广泛,但存在C1类问题单元边界协调不完全的缺陷。非协调元则通过放松协调要求来克服这些缺陷。广义协调元则是介于两者之间的一种单元,基于势能原理,在平均位移意义上保证单元间位移协调。它具有简便、高效和可靠的特点,特别适用于薄板弯曲和其他要求C1连续性的问题。该单元在变分原理上基于势能驻值原理,推导方法简便,程序实施也易于实现。在薄板弯曲和稳定分析中,它能以最少的自由度和低阶位移模式得到高精度的结果,且对不规则网格形状不敏感,收敛性得到保证。
协调元虽然创立最早,应用较广,且具有保证收敛性的特点。但也有他的缺点:一般位移协调元是结点位移协调,由此导致C1类问题的单元边界上不能完全协调。针对这些缺陷,非协调元的思路诞生了。非协调元的做法是:不要求相邻单元的位移场彼此精确协调,即放松协调要求。
广义协调元是一种基于势能原理的位移元。其基本原理是:对于粗网格,在平均位移的意义上保证单元间的位移协调,当网格无限细分时,即能保证单元间的位移协调。与常规位移元的不同之处是用单元公共边处的平均位移协调条件来代替常规位移元的点协调条件。是介于协调元与非协调元之间的一种单元。它既保留了非协调元自由度少、精度高的优点,又捎除了非协调元有时不能收敛的缺点。
More...