本文摘要(由AI生成):
本文介绍了LU分解法和高斯消去法在线性代数中的应用。LU分解法将系数矩阵分解为下三角矩阵L和单位上三角矩阵U的乘积,从而简化行列式的计算。高斯消去法则是将矩阵化为上三角矩阵,行列式值保持不变。文章还通过算例展示了高斯消去法的应用,并提供了相关程序的下载链接。此外,文章还探讨了行列式的意义和性质,包括行列式与几何图形体积的关系、行列式的转置、行列式行的互换、行列式行的公因子提取、行列式行的线性变换等性质。
在已经完成 LU 分解之后也可以利用 LU 分解进行计算。这里采用 Crout 分解法把系数矩阵分解为
A = LU
其中 L 为下三角矩阵, U 为单位上三角矩阵,进而有
det(A)= det(L)det(U)
按照高斯消去法将矩阵A化为上三角矩阵A_up,则det(A)= det(A_up)
自编程序采用高斯消去法。计算结果为:
★★★ 往期相关 ★★★
PS:程序下载点击这里
★行列式的意义:
n阶行列式的每一行(列)看作一个n维向量,则由n个n维向量围成一个几何图形。行列式就是这个几何图形的体积。
★行列式的性质
性质1 行列式与它的转置行列式相等。
性质2 互换行列式的两行(列),行列式变号。
推论 如果行列式有两行(列)完全相同,则此行列式为零。
性质3 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。
性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
-------------- ------------------ end ------ ----- --- --- ----