本文摘要(由AI生成):
矩阵为二维数组,向量乃一维数组,Fortran中matmul函数无法直接实现两者的乘法。然而,Fortran提供了多种方法解决此问题。一是将向量视作矩阵的退化形式,如将a(3)视为a(3,1)或a(1,3),进而用matmul运算。二是利用spread函数将一维数组扩展为二维数组,再通过matmul进行计算。此外,dot_product函数也能实现矩阵与向量的乘法,它通过对矩阵的每一行与向量进行点积运算来得出结果。程序员重复造轮子,在学习阶段有助于深入理解技术内部机制,锻炼技能,同时也是对新技术的实践应用。
矩阵是二维数组,而向量是一维数组,内置函数matmul不能实现矩阵与向量的乘法运算。在这一点Fortran不如matlab灵活。
Fortran如何实现矩阵与向量的乘法运算,现有以下三种方法供参考。
一)将一维数组看作二维数组的退化形式,比如a(3)可以看作a(3,1)或者a(1,3),这样就可以用matmul函数计算了。
二)用spread函数将一维数组扩展成二维数组,同样可用matmul函数计算。
来看过程。
数组c的第一列就是需要的计算结果。
spread(B,2,2)就是按列扩展,成为二维数组
三)利用dot_product函数。dot_product函数是向量点积运算函数,可将二维数组的每一行抽取出来,和一维数组作dot_product运算。
程序员为什么会重复造轮子?现在的软件发展趋势,越来越多的基础服务能够“开箱即用”、“拿来用就好”,越来越多的新软件可以通过组合已有类库、服务以搭积木的方式完成。这是趋势,将来不懂开发语言的人都可以通过利用现有软件组件快速构建出能解决实际问题的软件产品。对程序员来讲,在一开始的学习成长阶段,造轮子则具有特殊的学习意义,学习别人怎么造,了解内部机理,自己造造看,这是非常好的锻炼。每次学习新技术都可以用这种方式来练习。