首页/文章/ 详情

参变量变分原理(1)

7月前浏览6015

本文摘要(由AI生成):

本文介绍了参变量变分原理在解决具有双线性本构关系杆件问题中的应用。经典变分原理在处理有约束的最优控制问题时受限,而参变量变分原理通过构造统一本构方程,将问题转化为二次规划问题。文章详细阐述了拉、压不同模量杆件的参变量统一本构方程的建立过程,并推导出参数变量与伸长量、外载之间的关系。最终,建立了拉、压不同模量杆件的参变量变分原理,并得出问题的平衡方程。这一原理为解决复杂力学问题提供了新的思路和方法。

参变量变分原理

如图1所示的拉杆,刚度为    ,其势能表达式为

 

▲图1

求此泛函极值即为经典变分原理。另一方面,求极值也可看做是最优控制,即二次优化问题。经典变分原理只能解决一类简单的最优控制问题,因为它只能在无约束条件下是有效的。而实际上更多的是属于有约束的一类最优控制问题。对于力学中的一些问题,如弹塑性分析、接触问题分析等,经典变分法在处理这类问题时将会受到一定的限制,需要借助参变量变分原理,注意和广义变分原理的区别。

▲图2

图2所示,若材料具有双线性本构关系,杆件处于拉伸状态时的弹性模量为    ,(对应的刚度为    );当其处于压缩状态时,弹性模量为    (对应的刚度为    )。其物理方程可表示为:

 

具有拉压不同弹性模量的杆件,求解算法较为复杂。基于参变量变分原理求解此类问题的基本思路是通过构造杆件在拉、压两种应力状态下的统一本构方程来避免算法执行过程中弹性模量的刚性选择,进而将问题转换为二次规划问题来求解。下面我们将详细讲述拉、压不同模量杆件的参变量统一本构方程的建立。选取的情况进行推导,而    的情况同理可得。对分别处于拉伸和压缩两种应力状态的杆件,我们考虑始终选取其压缩刚度    来建立本构方程。对于处于压缩状态的杆件而言,压缩刚度自然反映的是杆件的真实变形和应力状态;而对于处于拉伸状态的杆件而言,由于杆件的真实变形状态本应由其拉伸刚度来描述,所以当选取压缩刚度来计算其变形时会引入一个附加伸长量    。我们把    称作参数变量,其物理意义如图3所示。

▲图3

注意到此时有,参数变量    与伸长量    、外载    之间的关系可表示为:

 

(2)也可写为

 

其中

 

(3)和(4)为杆件的参变量统一本构方程。由式(4)可以发现,参数变量    表征了杆件所处的实际应力状态。具体地,当杆件受压缩短时,    ,式(3)即为杆件受压时的本构方程;而杆件受拉伸长时,    ,将其代入式(3)并整理化简后,可得    ,即杆件受拉时的本构方程。这表明,统一本构方程式(3)完全等价于问题原始的非线性弹性本构方程。此外,还不难发现    总是成立的。实际分析时,我们只需计算表征杆件当前应力状态参数变量    即可,无需关注弹性模量变化。

为方便数值求解,我们可对式(4)作进一步的推导。首先,将式(4)的第二式整理为:

 

应注意的是,式(5)只在    的条件下成立;而当    时,式(5)不能成立。当    时,由于    ,且事先我们已假定,即,应有:

 

为将式(5)和(6)统一起来,引入一个非负的松弛变量    ,可得:

 

式(7)中,        表明非负条件;而    为互补条件,它意味着,    两个非负变量中,至少有一个为零,也可以同时为零。具体可分为以下三种情形:

(1)当    时,有    ,表明杆件既不伸长,也不缩短,处于未变形状态;

(2)当时,有,表明杆件伸长,处于拉伸状态;

(3)当时,有    ,表明杆件缩短,处于压缩状态。

因此,式(7)是典型的状态控制方程,    可理解为控制参数,表征了杆件处于拉、压两种应力状态下的附加伸长量:杆件受压或未变形时,此附加伸长量    为零;件受拉时,此附加伸长量为    

有了以上推导以后,我们便可以建立拉、压不同模量杆件和图1拉杆的参数最小势能原理(参变量变分原理)。利用式(3),可以写出单根杆件的含有参数变量的势能表达式:

 

不过该势能表达式并不能独立存在,而需要附加上互补方程组(7)才能准确地描述问题的物理含义:在状态控制方程(式(7))的约束下,真实的位移解总是使得系统的势能(式(8))取最小值。概括起来,单根拉、压不同模量杆件的参变量变分原理可表达为:

 

根据参变量变分原理,通过对式(8)进行变分运算便可得到问题本身的平衡方程.具体地,参数变量    不参与变分计算,而只对变量    进行变分运算,可得:

 

显然,式(10)与式(3)等价,即杆件的平衡方程。求解时,无论杆件处于拉伸还是压缩状态,只需将由状态控制方程(7)解得的参数变量入代入平衡方程(10)便能解得杆件的变形量    


双线性模量的传统算法参见

双线性弹塑性模型(一)

双线性弹塑性模型(二)

双线性弹塑性模型(三)

双线性弹塑性模型(四)

双线性弹塑性模型(五)



来源:数值分析与有限元编程
非线性材料控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-01
最近编辑:7月前
太白金星
本科 慢慢来
获赞 5粉丝 10文章 324课程 0
点赞
收藏
作者推荐

力学概念| 自平衡体系(二)

本文摘要(由AI生成):斜拉桥由斜拉索、塔柱和主梁构成,形成自平衡体系。桥面荷载通过拉索传递至塔柱,转化为压力,同时拉索为主梁提供弹性支撑。斜拉桥充分利用钢索抗拉强度与混凝土抗压强度,塔柱常用混凝土结构。桥面荷载与自重产生钢索拉力,轻质材料或新型结构体系可有效减少拉力。现代大跨度斜拉桥主梁常采用钢桁梁体系。斜拉桥通过自平衡体系实现力的直接传递,提升结构刚度,实现经济高效。如需更多力学概念解读,敬请关注往期文章。力学概念| 自平衡体系(一)斜拉桥是由斜拉索、塔柱和主梁(桥面)组成,也是一种自平衡体系。简单来说,斜拉桥就是一个天平,两端的重量相当并通过钢索传递到塔柱上,成为塔柱的压力。对于主梁来说,拉索为主梁提供弹性支承,因此,拉索张力大小是由桥面荷载决定。▲图1 斜拉桥传力路径图1所示为斜拉桥的传力路径。由于索的使用,使作用在桥面上的荷载不是通过弯矩作用传递到支座,而主要是通过索中的拉力传递给支承塔柱。拉索张力的竖向分量直接通过塔柱传递至基础。拉索张力的水平分量又转化为主梁的轴向力。由于斜拉桥结构的对称性,主梁轴向力大小相等,方向相反,因此桥面方向是自平衡的。值得注意的是,桥面的累积轴向力在桥塔位置是最大的,因此此处是强度控制条件。 ▲图2 主梁的轴力分布,在塔柱位置实现自平衡斜拉桥是一种优秀的结构体系,值得借鉴。充分利用了钢索的抗拉强度大,以及混凝土材料的抗压强度大的特点,因此,塔柱普遍采用混凝土结构,如图3所示。▲图3 斜拉桥塔柱采用混凝土结构由于部分地建立了自平衡体系,力以相对直接的方式由桥面传递至支座从而使结构刚度更大,更经济。由于钢索拉力是由桥面荷载和自重产生,桥面使用轻质的新材料或者新型结构体系,可以有效减少钢索拉力。现代大跨度斜拉桥的主梁普遍采用钢桁梁体系,如图4所示。▲图4 斜拉桥主梁采用钢桁梁体系★★★★★★★ 往期 ★★★★★★★★力学概念| 梁的极限弯矩力学概念| 自平衡体系(一)力学概念| 自平衡体系(二)力学概念| 空腹桁架力学概念| 直接传力路径力学概念| 理解刚度(一)来源:数值分析与有限元编程

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈