首页/文章/ 详情

页岩气水平井分段压裂最优裂缝间距+深层页岩气水平井复合暂堵压裂技术的探索与实践

6月前浏览1484

【裂缝模拟-经典回顾】页岩气水平井分段压裂最优裂缝间距

(关键词:裂缝网络;水力压裂;最优间距;页岩气)

文献信息: Liu Chuang; Liu He; Zhang Yongping; Deng Dawei; Wu Hengan. Optimal spacing of staged fracturing in horizontal shale-gas well. [J]. Journal of Petroleum Science and Engineering. Volume 132, Issue. 2015. DOI: 10.1016/j.petrol.2015.05.011

摘要译文:页岩储层具有低渗透或特低孔隙度,需要通过建立裂缝网络来实现经济产量。裂缝间距被认为是水平井完井成功的主要因素。水平井支撑裂缝的开启会引起其附近地应力的重新定向,进而影响应力释放裂缝的形成和分布。本文利用支撑裂缝产生应力干扰的二维数值模型,计算了压裂水平井的应力重定向程度。基于横向裂缝的交替顺序,模拟水平井分段压裂。通过绘制不同压裂压裂段产生的应力释放裂缝的角度,我们计算出应力释放裂缝相交的网络面积。研究结果表明,随着裂缝间距的变化,网络面积有一个峰值,因此对应间距为最优裂缝间距。研究了地应力差和净压力对裂缝最优间距的影响。结果表明,应力各向异性越小,净压力越大,最优裂缝间距越大。最后,研究了支撑剂对最优间距的影响。研究结果可为优化裂缝间距、提高岩石基质导流性等完井设计提供新的思路。

摘要原文:Shale reservoirs have low or ultra-low permeability and porosity, and require achieving economic production rates by creating fracture network. The spacing between fractures is thought to be a major factor in the success of horizontal well completions. The opening of a propped transverse fracture in horizontal wells causes a reorientation of in-situ stresses in its neighborhood, which in turn affects the creation and distribution of stress relief fractures. In this paper, the extent of stress reorientation has been calculated for fractured horizontal well using two-dimensional numerical model of the stress interference induced by the creation of propped fracture. Staged fracturing in horizontal well is simulated based on an al-ternate sequencing of transverse fractures. By mapping the angle of stress-relief fractures generated by different fracture stages, we calculate the network area that is the extent of the intersection of stress-relief fractures. Our results demonstrate that the network area has a peak value with the varying fracture spacing and therefore, the associated spacing is optimal fracture spacing. The effect of in-situ stress contrast and net pressure on the optimal fracture spacing has been investigated. It is shown that optimal fracture spacing will increase with lower stress anisotropy or larger net pressure. Finally, the effect of proppant on optimal spacing is investigated. The results presented in this paper can offer some new insights on the completion designs, such as optimizing fracture spacing and improving the conductivity of rock matrix.


图1 德克萨斯-两步法过程的数值模拟结果(a)前两步后最大水平应力的偏转分布。(b)第三步后最大水平应力的偏转分布。(c)压裂后裂缝网络连通性分布,区域越红裂缝网络连通性越高

(前两次裂缝引起的最大水平应力偏转分布如图1(a)所示。在这种情况下,应力释放裂缝由于间距大而无法相互连接。在对前两条裂缝进行增产后,第三条裂缝位于这两条裂缝的中间,第三条裂缝引起的最大应力偏转分布为如图1(b)。第三次压裂产生的应力释放裂缝将与之前的应力释放裂缝相交,形成大面积裂缝网络图1(c)。)

图2 Af和An的示意图

αA为网络比:定义为αA=An/Af,其中An为主裂缝间网络面积,Af为主裂缝间总面积

图3 随着裂缝间距的变化,网络比增大

(网络比峰值对应的裂缝间距可定义为最优间距。在裂缝间距为50m时,裂缝网络比仅为0.37,表明主裂缝之间有37%的区域具有较高的裂缝网络连通性。随着裂缝间距的变化,网络比逐渐增大,直至达到最大值0.67。间距达到140m后,网络比随着裂缝间距的增大而减小。因此,极低或极大的裂缝间距都不能形成大范围的裂缝网络。在这种情况下,最优间距是140m。)

图4 随净压力变化的最优间距。净压力较大(40%、60%)时不存在应力反转间距

(研究了净压力对最优间距的影响。压裂后,支撑剂分别进入裂缝,净压力分别为压裂后施加在裂缝面上的压力的20%、30%、40%和60%。净压力为20%和30%时,应力反转间距(裂缝间距必须大于应力反转间距,以避免偏转应力造成沿着井筒方向的裂缝。)分别为160m和120m。此外,当裂缝间距大于应力反转间距时,网络比呈下降趋势,此时应力反转间距为最优间距。)

图5 随着地应力差和净压力的变化,应力重定向角大于60°的区域

(提出了应力重定向区。它被定义为应力重定向角大于60°的区域。在净压力为5MPa时,面积几乎为零。这表明低净压力或严重闭合的支撑裂缝不会引起大的应力重定向场。此外,在这种情况下,当地应力差达到5MPa时,裂缝附近的应力重定向区域变化不大。)

图6 应力释放裂缝交角对网络比的影响

(网络比随着应力释放裂缝交角α的增大而减小,而最优间距变化不明显,特别是当α小于60°时,最优间距保持不变。)

图7 网络比与最优裂缝间距的关系

(可以看出网络比和归一化最优间距与裂缝长度无关。)

图8 净压力和地应力差对网络比的影响

(网络比随应力差减小,随净压力增大。由于地应力差,网比上的坡度较大。因此,减小应力各向异性对于提高远场裂缝复杂性是非常有效的。在5MPa应力差下,网络比仅为0.1。在这种情况下,必须采用一些新的方法来减小应力各向异性。网络比斜率随净压力的增大而减小,即在较大的净压力下提高裂缝复杂性是无效的。)


图9 间距优化模型和支撑剂效应模型中,净压力和地应力差对最优间距的影响

(在黑线所示的两种模型中,最优间距随地应力差的变化几乎相同。蓝线表示两种模型的最优间距随净压力的变化。当净压力为5或6MPa时,裂缝间距优化模型和支撑剂效应模型的最优裂缝间距相同,说明支撑裂缝在这一早期压裂段的力学相互作用最小。随着净压力的增大,两种模型的曲线出现偏离。)


【复合暂堵压裂技术-前沿追踪】深层页岩气水平井复合暂堵压裂技术的探索与实践——以川东南X2井为例

(关键词:深层页岩气;复合暂堵压裂;水平井;缝网压裂)

文献信息:Hu Zheyu; Zhao Jinzhou; Ren  Lan, et al. Exploration and Practice of Composite Temporary Plugging Fracturing Technology for Deep Shale Gas Horizontal Wells: A Case Study from X2 Well in Southeastern Sichuan. [J]. SPE. Issue. 2023. DOI:10.2118/214830-MS

摘要译文:埋藏深度大于3500m的深层页岩气储层占川东南五峰组—龙马溪组整个埋深范围的近一半,该埋深范围内蕴藏着50%以上的页岩气资源。深层页岩气埋深,温度高,地层应力大,岩石塑性强。地下复杂裂缝网络难以形成和维持。深层页岩气压裂技术对推动四川盆地页岩气整体开发具有重要意义。X2井是川东南地区的一口预勘探井。该井最大垂向深度为4343.8m,优质页岩段粘土矿物平均含量为26.2%,硅质矿物平均含量为48.1%,盐类矿物平均含量为14.9%,弹性模量为45.6GPa,储层最大、最小水平主应力分别为115.5MPa和98MPa。水平应力差为16.8~18.5MPa。该储层具有高水平应力差和低脆性的特点,严重限制了有效复杂裂缝网络的形成。本文提出了裂缝内+裂缝口复合暂堵压裂工艺,通过调节每条裂缝的缝口流量,增加裂缝净压力,提高裂缝网络复杂性,平衡多条裂缝的扩展,实现高效压裂。1503m水平井段为水力压裂30段,每段3个簇,簇间距为8~10m,平均段长为47.33m。压裂液总注入量为89736.6m3(用液强度63.19m3/m),支撑剂总注入量为3477m3(砂强度2.45m3/m)。平均总砂液比为3.88%,泵送排量为14~18m3/min,该裂缝性深层页岩井日试气产量达到41.2×104m3。压裂效果显著。提出了“多段少簇、密切割、大液量、高排量、中等支撑剂用量、复合暂堵、变粘度滑溜水交替注入”的深层页岩气压裂技术。现了埋深4000m以上深层页岩气勘探突破,推动了中国深层页岩气压裂技术的发展。

摘要原文: The deep shale gas formation that has a burial depth of more than 3,500m covers nearly half of the area of entire Wufeng Formation-Longmaxi shale gas formation in the Southeastern Sichuan Basin, and more than 50% of the shale gas resources are reserved in this burial depth range. Deep shale gas is buried deep with high temperatures, high formation stress, and strong rock plasticity. It is difficult to form and maintain a complex fracture network underground. The deep shale gas fracturing technology is important to promote the overall development of shale gas in the Sichuan Basin. Well X2 is a pre-exploration well in the Southeastern Sichuan Basin. The maximum vertical depth of this well is 4343.8m, the average clay mineral content of the high-quality shale interval is 26.2%, the average siliceous mineral content is 48.1%, the average salt mineral content is 14.9%, the elastic modulus is 45.6GPa, and the maximum and minimum horizontal principal stress of the reservoir is 115.5MPa and 98MPa, respectively. Then the horizontal stress difference is 16.8~18.5MPa. The reservoir is characterized by a high horizontal stress contrast and a low brittleness, which severely restricts the formation of an effective complex fracture network. A composite temporary plugging fracturing of inner-fracture + inlet fracture is proposed, and the fracture net pressure is increased to improve the fracture network complexity and balance the propagation of multiple fractures by adjusting the inlet flow rate of each fracture to achieve high-efficiency fracturing. The 1503m horizontal well interval is hydraulic fractured 30 stages with 3 clusters in each stage, cluster spacing is 8~10m, and the average stage length is 47.33m. The total injected fracturing fluid volume is 89736.6m3 (fluid strength 63.19m3/m), and the total amount of proppant injected was 3477m3 (sand strength 2.45m3/m). The average overall sand-fluid ratio is 3.88%, the pump rate is 14~18 m3/min, and the daily test production of this fractured deep shale well reached to 41.2×104m3. The fracturing performance is remarkable. We proposed a deep shale gas fracturing technology with "more stage & less cluster, dense cluster perforation, large fluid volume, high pump rate, medium proppants amount, double plugging, and variable viscosity slippery water alternating injection". It makes an exploration breakthrough of the deep shale gas buried more than 4000m and promotes the development of deep shale gas fracturing technology in China.

图1裂缝缝口暂堵压裂过程示意图:(a)暂堵球泵入井筒;(b)暂堵球堵塞优势裂缝;(c)暂堵球有效封堵,达到抑制优势裂缝、促进均衡扩展的目的

(缝口暂堵:在压裂过程中泵入一定数量的暂堵球图1(a),当大量流体流入优势裂缝时,暂堵球堵塞优势裂缝流量的几率更高。但由于暂堵球的直径略大于射孔直径,可以有效封堵优势裂缝射孔,减少优势裂缝的进液量,依次增加劣势裂缝的进液量图1(b)。达到裂缝均衡扩展的目的图1(c)。

图2 裂缝缝内暂堵压裂过程示意图:(a)向井筒内泵入暂堵剂;(b)暂堵剂在裂缝尖端形成桥塞;(c)裂缝内净压力增加,激活弱面,形成复杂的裂缝网络

缝内暂堵:将一定体积的暂堵剂泵入井筒,并跟随压裂液流入水力裂缝图2(a)。然后在裂缝尖端形成桥塞,阻止主裂缝继续扩展图2(b),导致裂缝内流体压力逐渐增大。当裂缝净压力超过激活弱面临界压力时,与主裂缝相交的天然裂缝、层理裂缝等弱面被激活形成分支裂缝,增加了深层页岩气裂缝网络的复杂性图2(c)。)

图3 暂堵球数量对水力裂缝扩展长度的影响

(模拟结果表明,当泵送暂堵球数量增加时,内部裂缝扩展限制和裂缝非均衡扩展程度都大大降低。但暂堵球过多会导致外侧裂缝簇射孔过度堵塞,完全阻断裂缝扩展,导致外侧裂缝扩展不足,如图3所示。)

图4 暂堵球数量对裂缝长度变异系数的影响

(当泵送10~15个暂堵球时,每次水力裂缝扩展长度的变异系数小于5%,裂缝扩展均衡性最好。因此,X2井暂堵球的设计数量为10~15个,如图4所示。)

图5 不同排量下裂缝网络体积平面布局(从左至右,排量分别为10m3/min、16m3/min、20m3/min)

(随着排量的增大,裂缝网络体积逐渐增大)

图6 不同排量下的裂缝网络体积

(当排量达到14m3/min时,裂缝网络体积先快速增大后增长逐渐减缓。)

图7 不同参数影响下的裂缝累积产量:(a)裂缝半长;(b)裂缝导流能力

(生产模拟结果显示,当裂缝半长超过280m,裂缝导流能力大于2 D·cm时,累积产量上升速度放缓,如图7所示。因此,推荐裂缝半长为280~300m,主裂缝导流能力为2D·cm。)

图8 全井段的裂缝网络体积

(全井裂缝网络体积最大值为103.7×104m3(第27段),最小值为35.1×104m3(第30段),平均值为77.4×104m3。只有20%的压裂段裂缝网络体积小于70×104m3,整个井的裂缝网络体积为5325.8×104m3。各压裂段裂缝网体积主要分布在70~90×104m3范围内。)

图9 全井裂缝网络的复杂性

(裂缝网络复杂性在全井的最大值为75.3%(第2压裂段),最小值为18.4%(第12压裂段),平均值为43.8%。只有20%的压裂段裂缝网络复杂性低于30%,大多数裂缝网络复杂性在30%至70%之间。全井段的裂缝网络复杂性较高。)


来源:现代石油人
ACT断裂非线性化学电子油气MATLABUG岩土UM裂纹理论材料控制曲面Origin
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-05-08
最近编辑:6月前
现代石油人
博士 签名征集中
获赞 25粉丝 62文章 806课程 1
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈