首页/文章/ 详情

螺纹规格为什么是6、8、10、12、14、16?

4月前浏览1580

本文摘要:(由ai生成)

优先数系是机械设计中用于标准化尺寸和参数的重要工具,基于等比数列,有助于简化设计、提高效率并减少浪费。它不仅用于尺寸选择,还涉及产品参数序列化,使设计更标准化、系统化。设计师可根据R10、R40或R80等不同的优先数系选合适数值,以满足特定需求。此方法广泛应用于机械、建筑、电子和航空航天等领域,掌握优先数系对设计师而言是一项重要技能,可提升设计质量与效率。

粗糙度为什么是0.8,1.6,3.2,6.3,12.5 ?

油缸缸径为什么是63,80,100,125 ?

油缸压力为什么是6.3,16,25,31.5 ?

螺纹规格为什么是6,8,10,12,14,16 ?

你可知道机械设计手册上无数的表格,所有产品样本上的参数表,都是怎么来的?

GBT321-2005 优先数和优先数系 标准

一切都来源于伟大的优先数系。

法国工程师雷诺看到热气球上的钢丝绳规格繁多,他就想了一个办法,将10开5次方,得到一个数1.6,然后辗转相乘,得出5个优先数如下:1.0、1.6、2.5、4.0、6.3。

这是一个等比数列,后数为前数的1.6倍,那么10以下的钢丝绳一下子只有5种,10到100的钢丝绳也只有5种,即10,16,25,40,63。

但是这样分法太稀疏,雷先生就再接再厉,将10开10次方,得出R10优先数系如下:1.0、1.25、1.6、2.0、2.5、3.15、4.0、5.0、6.3、8.0。

公比为1.25,于是10以内的钢丝绳只有10种,10到100的也只有10种,这就比较合理了。这时肯定有人说,这个数列,前面的数字好像相差不大,如1.0和1.25,简直没差别嘛,平常我就四舍五入了,但6.3和8.0间隔就大了,这样合理吗?

合理不合理,打个比方。比如说自然数1、2、3、4、5、6、7、8、9很顺溜,我们用这个数列来发工资,给张三发1000,给李四发2000,两人皆心服。突然通货膨胀,给张三发8000,给李四发9000。以前李四工资是张三的2倍,现在变成1.12倍。你说李四能愿意吗?他可是主管哪,给他发16000还差不多,张三是不会埋怨说主管比他多8000的。

这个自然界的事物,有两种比较方法,就是“相对”与“绝对”!优先数系是相对的。

有人说他的产品规格有10吨,20吨,30吨,40吨的,现在看来就不合理了吧?如果你取两倍的话,应该是10吨,20吨,40吨,80吨,或者保住头尾,也应该是10吨,16吨,25吨,40吨,公比为1.6才合理。

这就是“标准化”,论坛上常常看到有人说“标准化”,实际他们说的是“标准件”,所做的工作只是将整机的标准件整理一下,就叫标准化了,实际不是这样的。真正的标准化,你要把你的产品的所有参数按优先数系形成序列化,再把所有的零部件的功能参数及尺寸,用优先数系来序列化才对。

自然数是无穷的,但在机械设计师眼里,世界上只有10个数,它就是R10优先数。并且,这10个数相乘,相除,乘方,开方,结果还在这10个数里,何其奇妙!当你设计的时候,不知道尺寸该选择多大为好时,就在这10个数里选,你说何其方便!

1.0 N0、1.12 N2、1.25 N4、1.4 N6、1.6 N8、1.8 N10、2.0 N12、2.24 N14、2.5 N16、2.8 N18、3.15 N20、3.55 N22、4.0 N24、4.5 N26、5.0 N28、5.6 N30、6.3 N32、7.1 N34、8.0 N36、9.0 N38。

两个优先数,比如4和2,其序号分别为N24和N12,它们相乘,将其序号相加,其结果等于N36即8便是;

相除,序号相减,等于N12即2便是 ; 2的立方,将其序号N12乘以3得N36即8便是;

4的开方,将其序号N24除以2得N12即2便是如果求2的四次方呢?N12*4=N48,这里没有,怎么办?上面的列表,没有写上一个数,就是10,它的序号是N40,凡是序号大于40的,只看大于40的部分,比如N48就看N8,即1.6,然后乘以10得16就对了。如果序号是N88呢,看N8得1.6,然后乘以100得160便是,因为100的序号是N80,1000的序号是N120,依此类推。

做机械设计,一辈子用这20个数就足矣。但有时需用到R40数系,有40个数,就更完善了,若不够,还有R80系。我已将R40数系倒背如流,应付一般计算根本不用计算器。

简单来说算40径的45钢的抗扭能力,其扭转系数是0.5*π*R^3,扭应力选屈服点360的一半即180MPa,圆周率选3.15,左右手捏小数点,心算加减序号,一会就出来。有人说你不加安全系数吗?说吧,是取1.25,还是1.5,还是2啊?呵呵。

黄金分割0.618,也即1.618,这里也有1.6。平方根数列,就是根号1,根号2,根号3,很容易求出吧?(3的序号是N19)

π的平方等于多少?等于10。你算压杆稳定的时候就方便了吧?圆杆扭转系数约为0.1*D^3,现在你可以口算扭转系数了吧?

为什么大螺丝从M36直接跳到M40?

为什么齿轮的传动比有个6.3或者7.1?

为什么槽钢有个市场上很少见的12.6号?

为什么外协厂打电话来说140的方管没有,而有120和160的?

因为R5数系比R20数系优先。

为什么标准件的参数有个第一序列,第二序列?一般来说第一序列就是R5序列。

为什么Inventor的螺孔列表有个M11.2?现在你知道它不是胡诌出来的数吧?

还有钢板厚度,型钢型号,齿轮模数,一切标准件,一切工业品样本上的功能参数,尺寸参数,标准公差表,等等等等,它们的来源,此刻在我们的心中慢慢清晰起来。可以说,我们已经理解了半部机械设计手册,以及那些还没做出来的工业品。

那么,在设计产品的时候,就可以同时设计出一系列了,而不是设计完之后再进行所谓的“标准化”;更进一步,如果产品注定要序列化,那么我们甚至可以在对实际工况不甚了解的情况下设计产品,因为优先数系已将所有型号包括其中了。

优先数系的应用,上面列出的,可谓沧海一粟,无尽的应用等着我们自己去开发。背诵优先数系吧,这可是一劳永逸的活儿。

   
机械设计的内容讲解到此结束,欢迎各位进行补充。    

-End-

免责声明:本文系网络转载或改编,仅供学习,交流所用,未找到原创作者,版权归原作者所有。如涉及版权,请联系删。

来源:非标机械专栏
传动Inventor
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2024-04-28
最近编辑:4月前
非标机械专栏
签名征集中
获赞 172粉丝 39文章 1086课程 0
点赞
收藏
作者推荐

奥氏体、铁素体、珠光体、贝氏体、马氏体知识

本文摘要:(由ai生成)钢铁材料中包含多种基本组织,如奥氏体、铁素体、渗碳体和珠光体等。这些组织的形成与钢的化学成分、冷却速度和热处理工艺密切相关,对材料性能有重要影响。奥氏体是γ-Fe中的固溶体,铁素体是α-Fe中的固溶体,渗碳体是碳与铁的化合物,珠光体则是铁素体与渗碳体的混合物。此外,还有贝氏体、马氏体、莱氏体等多种组织类型。了解这些组织有助于优化钢铁材料的生产工艺和应用性能,提高材料的整体性能。 奥氏体 定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。 铁素体 定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体 定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体 定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体 定义:过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间 特征:过冷奥氏体在中温(350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不 穿晶 下贝氏体 定义:同上,但渗碳体在铁素体针内 特征:过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。 与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细 粒状贝氏体 定义:大块状或条状的铁素体内分布着众多小岛的复相组织 特征:过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为M-A组织 无碳化物贝氏体 定义:板条状铁素体单相组成的组织,也称为铁素体贝氏体 特征:形成温度在贝氏体转变温度区的最上部。板条铁素体之间为富碳奥氏体,富碳奥氏体在随后的冷却过程中也有类似上面的转变。无碳化物贝氏体一般出现在低碳钢中,在硅、铝含量高的钢中也容易形成 马氏体 定义:碳在a-Fe中的过饱和固溶体 特征: 板条马氏体:尺寸大致相同的细马氏体条定向平行排列,组成马氏体束或马氏体领域;在领域与领域之间位向差大,一颗原始奥氏体晶粒内可以形成几个不同取向的领域。由于板条状马氏体形成的温度较高,在冷却过程中,必然发生自回火现象,在形成的马氏体内部析出碳化物,故它易受侵蚀发暗。 针状马氏体,又称片状马氏体或高碳马氏体,它的基本特征是:在一个奥氏体晶粒内形成的第一片马氏体片较粗大,往往贯穿整个晶粒,将奥氏体晶粒加以分割,使以后形成 的马氏体大小受到限制,因此片状马氏体的大小不一,分布无规则。针状马氏体按一定方位形成。在马氏体针叶中有一中脊面,碳量越高,越明显,且马氏体也越尖,同时在马氏体间伴有白色残留奥氏体。 莱氏体 定义:奥氏体与渗碳体的共晶混合物 特征:呈树枝状的奥氏体分布在渗碳体的基体上 回火马氏体 定义:马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织 特征:它由马氏体在150~250℃时回火形成。这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体 位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点 回火屈氏体 定义:碳化物和a-相的混合物 特征:它由马氏体在350~500℃时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大 回火索氏体 定义:以铁素体为基体,基体上分布着均匀碳化物颗粒 特征:它由马氏体在500~650℃时高温回火形成。其组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织,马氏体片的痕迹已消失,渗碳体的外形已较清晰,但在光镜下也难分辨,在电镜下可看到的渗碳体颗粒较大 球状珠光体 定义:由铁素体和粒状碳化物组成 特征:经球化退火获得,渗碳体成球粒状分布在铁素体基体上;渗碳体球粒大小,取决于球化退火工艺,特别是冷却速度。球状珠光体可分为粗球状、球状和细球状和点状四种珠光体 魏氏组织 定义:如果奥氏体晶粒比较粗大,冷却速度又比较适宜,先共析相有可能呈针状(片状)形态与片状珠光体混合存在,称为魏氏组织 特征:亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形,粗大铁素体呈平行或三角形分布。它出现在奥氏体晶界,同时向晶内生长,过共析钢中魏氏组织渗碳体的形态有针状或杆状,它出现在奥氏体晶粒的内部来源:每天学点热处理机械设计的内容讲解到此结束,欢迎各位进行补充。 -End-免责声明:本文系网络转载或改编,仅供学习,交流所用,未找到原创作者,版权归原作者所有。如涉及版权,请联系删。 来源:非标机械专栏

未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈